A Collaborative National Center for Fusion & Plasma Research

ITER

Subscribe to RSS - ITER

ITER is a large international fusion experiment aimed at demonstrating the scientific and technological feasibility of fusion energy.

ITER (Latin for "the way") will play a critical role advancing the worldwide availability of energy from fusion — the power source of the sun and the stars.

To produce practical amounts of fusion power on earth, heavy forms of hydrogen are joined together at high temperature with an accompanying production of heat energy. The fuel must be held at a temperature of over 100 million degrees Celsius. At these high temperatures, the electrons are detached from the nuclei of the atoms, in a state of matter called plasma.

PPPL senior physicist Wei-li Lee honored at week-long symposium

Physicists from around the world gathered at the University of California, Irvine this past summer for a symposium in honor of Wei-li Lee, a senior physicist at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL). The week-long event, held from July 18-22, focused on gyrokinetic simulation — a technique Lee invented in the 1980s to model the behavior of particles within plasma, the ultrahot gas composed of electrons and atomic nuclei that fuels fusion reactions.

PPPL scientists present key results at the 58th annual meeting of the American Physical Society Division of Plasma Physics

More than 100 scientists from the U.S. Department of Energy’s (DOE) Princeton Plasma Laboratory (PPPL) joined nearly 2,000 others from around the world in San Jose, California, to discuss the latest findings in plasma science and fusion research. PPPL physicists contributed to papers, talks and presentations ranging from astrophysical plasmas to magnetic fusion energy during the 58th annual meeting of the American Physical Society (APS) Division of Plasma Physics.

PPPL scientists present key results at the 58th annual meeting of the American Physical Society Division of Plasma Physics

More than 100 scientists from the U.S. Department of Energy’s (DOE) Princeton Plasma Laboratory (PPPL) joined nearly 2,000 others from around the world in San Jose, California, to discuss the latest findings in plasma science and fusion research. PPPL physicists contributed to papers, talks and presentations ranging from astrophysical plasmas to magnetic fusion energy during the 58th annual meeting of the American Physical Society (APS) Division of Plasma Physics.

PPPL physicists win funding to lead a DOE exascale computing project

A proposal from scientists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) has been chosen as part of a national initiative to develop the next generation of supercomputers. Known as the Exascale Computing Project (ECP), the initiative will include a focus on exascale-related software, applications, and workforce training.

First results of NSTX-U research operations presented at the International Atomic Energy Agency Conference in Kyoto, Japan

Researchers from the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratories (PPPL) and collaborating institutions presented results from research on the National Spherical Torus Experiment Upgrade (NSTX-U) last week at the 26th International Atomic Energy Agency Conference (IAEA) in Kyoto, Japan. The four-year upgrade doubled the magnetic field strength, plasma current and heating power capability of the predecessor facility and made the NSTX-U the most powerful fusion facility of its kind.

Major next steps proposed for development of fusion energy based on the spherical tokamak design

Among the top puzzles in the development of fusion energy is the best shape for the magnetic facility — or “bottle” — that will provide the next steps in the development of fusion reactors. Leading candidates include spherical tokamaks, compact machines that are shaped like cored apples, compared with the doughnut-like shape of conventional tokamaks.  The spherical design produces high-pressure plasmas — essential ingredients for fusion reactions — with relatively low and cost-effective magnetic fields.

PPPL and Princeton help lead a new center to understand and mitigate runaway electrons that pose a challenge for ITER

Runaway electrons, a searing, laser-like beam of electric current released by plasma disruptions, could damage the interior walls of future tokamaks the size of ITER, the international fusion experiment under construction in France. To help overcome this challenge, leading experts in the field have launched a multi-institutional center to find ways to prevent or mitigate such events.

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Google+ · Pinterest · Instagram · Flipboard

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy

© 2017 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000