A Collaborative National Center for Fusion & Plasma Research

ITER

Subscribe to RSS - ITER

ITER is a large international fusion experiment aimed at demonstrating the scientific and technological feasibility of fusion energy.

ITER (Latin for "the way") will play a critical role advancing the worldwide availability of energy from fusion — the power source of the sun and the stars.

To produce practical amounts of fusion power on earth, heavy forms of hydrogen are joined together at high temperature with an accompanying production of heat energy. The fuel must be held at a temperature of over 100 million degrees Celsius. At these high temperatures, the electrons are detached from the nuclei of the atoms, in a state of matter called plasma.

Hong Qin promoted to executive dean at the University of Science and Technology of China

Hong Qin bestrides the globe as a leading scientist and educator. For the past four years he has shuttled between PPPL and a teaching post at the University of Science and Technology of China (USTC), which named him executive dean of its School of Nuclear Science and Technology in October. Hong takes up the position while maintaining his agenda as a principal research physicist in the PPPL Theory Department and his teaching in the Program in Plasma Physics at Princeton University, where he is a lecturer with the rank of professor in the Department of Astrophysical Sciences.

Hong Qin promoted to executive dean at the University of Science and Technology of China

Hong Qin bestrides the globe as a leading scientist and educator. For the past four years he has shuttled between PPPL and a teaching post at the University of Science and Technology of China (USTC), which named him executive dean of its School of Nuclear Science and Technology in October. Hong takes up the position while maintaining his agenda as a principal research physicist in the PPPL Theory Department and his teaching in the Program in Plasma Physics at Princeton University, where he is a lecturer with the rank of professor in the Department of Astrophysical Sciences.

PPPL successfully tests system for mitigating instabilities called “ELMs”

PPPL has successfully tested a Laboratory-designed device to be used to diminish the size of instabilities known as “edge localized modes (ELMs)” on the DIII–D tokamak that General Atomics operates for the U.S. Department of Energy in San Diego. Such instabilities can damage the interior of fusion facilities.

The PPPL device injects granular lithium particles into tokamak plasmas to increase the frequency of the ELMs. The method aims to make the ELMs smaller and reduce the amount of heat that strikes the divertor that exhausts heat in fusion facilities.

PPPL successfully tests system for mitigating instabilities called “ELMs”

PPPL has successfully tested a Laboratory-designed device to be used to diminish the size of instabilities known as “edge localized modes (ELMs)” on the DIII–D tokamak that General Atomics operates for the U.S. Department of Energy in San Diego. Such instabilities can damage the interior of fusion facilities.

The PPPL device injects granular lithium particles into tokamak plasmas to increase the frequency of the ELMs. The method aims to make the ELMs smaller and reduce the amount of heat that strikes the divertor that exhausts heat in fusion facilities.

“Rip” Perkins, pioneering PPPL physicist and a design leader for ITER, dies at 80

Francis “Rip” William Perkins Jr., a pioneering plasma physicist whose contributions to the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) ranged from seminal advances in fusion energy and astrophysical research to the education of a generation of scientists, died on July 26 in Boulder, Colo. He was 80 and had long battled Parkinson’s disease.

“Rip” Perkins, pioneering PPPL physicist and a design leader for ITER, dies at 80

Francis “Rip” William Perkins Jr., a pioneering plasma physicist whose contributions to the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) ranged from seminal advances in fusion energy and astrophysical research to the education of a generation of scientists, died on July 26 in Boulder, Colo. He was 80 and had long battled Parkinson’s disease.

Experts assemble at PPPL to discuss mitigation of tokamak disruptions

Some 35 physicists from around the world gathered at PPPL last week for the second annual Laboratory-led workshop on improving ways to predict and mitigate disruptions in tokamaks. Avoiding or mitigating such disruptions, which occur when heat or electric current are suddenly reduced during fusion experiments, will be crucial for ITER the international experiment under construction in France to demonstrate the feasibility of fusion power.

Experts assemble at PPPL to discuss mitigation of tokamak disruptions

Some 35 physicists from around the world gathered at PPPL last week for the second annual Laboratory-led workshop on improving ways to predict and mitigate disruptions in tokamaks. Avoiding or mitigating such disruptions, which occur when heat or electric current are suddenly reduced during fusion experiments, will be crucial for ITER the international experiment under construction in France to demonstrate the feasibility of fusion power.

PPPL’s dynamic diagnostic duo

Kenneth Hill and Manfred Bitter are scientific pioneers who have collaborated seamlessly for more than 35 years. Together they have revolutionized a key instrument in the quest to harness fusion energy — a device called an X-ray crystal spectrometer that is used around the world to reveal strikingly detailed information about the hot, charged plasma gas that fuels fusion reactions.

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Google+ · Pinterest · Instagram

PPPL is ISO-14001:2004 certified

Princeton University Institutional Compliance Program

© 2014 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000