A Collaborative National Center for Fusion & Plasma Research

ITER

Subscribe to RSS - ITER

ITER is a large international fusion experiment aimed at demonstrating the scientific and technological feasibility of fusion energy.

ITER (Latin for "the way") will play a critical role advancing the worldwide availability of energy from fusion — the power source of the sun and the stars.

To produce practical amounts of fusion power on earth, heavy forms of hydrogen are joined together at high temperature with an accompanying production of heat energy. The fuel must be held at a temperature of over 100 million degrees Celsius. At these high temperatures, the electrons are detached from the nuclei of the atoms, in a state of matter called plasma.

New engineering head Valeria Riccardo has two decades of experience on fusion experiments

Valeria Riccardo, new head of engineering at the Princeton Plasma Physics Laboratory, is a United Kingdom transplant who comes to the position with more than 20 years of experience in project management, fusion design, and analysis on two fusion devices in the U.K. that are similar to the U.S. Department of Energy’s Princeton Plasma Physics Laboratory’s National Spherical Torus Experiment-Upgrade (NSTX-U).  

Top 10 PPPL stories that you shouldn’t miss

The past year saw many firsts in experimental and theoretical research at the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL). Here, in no particular order, are 10 of the Laboratory’s top findings in 2016, from the first results on the National Spherical Torus Experiment-Upgrade to a new use for Einstein’s theory of special relativity to modeling the disk that feeds the supermassive black hole at the center of our galaxy.

1. First results of the National Spherical Torus Experiment-Upgrade (NSTX-U)

Valeria Riccardo

Valeria Riccardo is PPPL’s head of engineering, the largest department at PPPL. She worked for more than 20 years at the Culham Centre for Fusion Energy in Oxfordshire, England, which operates the Joint European Torus (JET) and the Mega Amp Spherical Tokamak (MAST) facility, a sister facility to PPPL. As chief engineer at the Culham Center for ve years, she was responsible for ensuring that the consequences of any design, installation and operation decision were understood.

PPPL senior physicist Wei-li Lee honored at week-long symposium

Physicists from around the world gathered at the University of California, Irvine this past summer for a symposium in honor of Wei-li Lee, a senior physicist at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL). The week-long event, held from July 18-22, focused on gyrokinetic simulation — a technique Lee invented in the 1980s to model the behavior of particles within plasma, the ultrahot gas composed of electrons and atomic nuclei that fuels fusion reactions.

PPPL senior physicist Wei-li Lee honored at week-long symposium

Physicists from around the world gathered at the University of California, Irvine this past summer for a symposium in honor of Wei-li Lee, a senior physicist at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL). The week-long event, held from July 18-22, focused on gyrokinetic simulation — a technique Lee invented in the 1980s to model the behavior of particles within plasma, the ultrahot gas composed of electrons and atomic nuclei that fuels fusion reactions.

PPPL scientists present key results at the 58th annual meeting of the American Physical Society Division of Plasma Physics

More than 100 scientists from the U.S. Department of Energy’s (DOE) Princeton Plasma Laboratory (PPPL) joined nearly 2,000 others from around the world in San Jose, California, to discuss the latest findings in plasma science and fusion research. PPPL physicists contributed to papers, talks and presentations ranging from astrophysical plasmas to magnetic fusion energy during the 58th annual meeting of the American Physical Society (APS) Division of Plasma Physics.

PPPL scientists present key results at the 58th annual meeting of the American Physical Society Division of Plasma Physics

More than 100 scientists from the U.S. Department of Energy’s (DOE) Princeton Plasma Laboratory (PPPL) joined nearly 2,000 others from around the world in San Jose, California, to discuss the latest findings in plasma science and fusion research. PPPL physicists contributed to papers, talks and presentations ranging from astrophysical plasmas to magnetic fusion energy during the 58th annual meeting of the American Physical Society (APS) Division of Plasma Physics.

PPPL physicists win funding to lead a DOE exascale computing project

A proposal from scientists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) has been chosen as part of a national initiative to develop the next generation of supercomputers. Known as the Exascale Computing Project (ECP), the initiative will include a focus on exascale-related software, applications, and workforce training.

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Google+ · Pinterest · Instagram · Flipboard

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy

© 2017 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000