A Collaborative National Center for Fusion & Plasma Research

ITER

Subscribe to RSS - ITER

ITER is a large international fusion experiment aimed at demonstrating the scientific and technological feasibility of fusion energy.

ITER (Latin for "the way") will play a critical role advancing the worldwide availability of energy from fusion — the power source of the sun and the stars.

To produce practical amounts of fusion power on earth, heavy forms of hydrogen are joined together at high temperature with an accompanying production of heat energy. The fuel must be held at a temperature of over 100 million degrees Celsius. At these high temperatures, the electrons are detached from the nuclei of the atoms, in a state of matter called plasma.

Scientists propose an enhanced new model of the source of a mysterious barrier to fusion known as the “density limit”

Researchers at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have developed a detailed model of the source of a puzzling limitation on fusion reactions. The findings, published in June in Physics of Plasmas, complete and confirm previous PPPL research and could lead to steps to overcome the barrier if the model proves consistent with experimental data. “We used to have correlation,” said physicist David Gates, first author of the paper. “Now we believe we have causation.” This work was supported by the DOE Office of Science.

Scientists propose an enhanced new model of the source of a mysterious barrier to fusion known as the “density limit”

Researchers at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have developed a detailed model of the source of a puzzling limitation on fusion reactions. The findings, published in June in Physics of Plasmas, complete and confirm previous PPPL research and could lead to steps to overcome the barrier if the model proves consistent with experimental data. “We used to have correlation,” said physicist David Gates, first author of the paper. “Now we believe we have causation.” This work was supported by the DOE Office of Science.

X marks the spot: Researchers confirm novel method for controlling plasma rotation to improve fusion performance

Rotation is key to the performance of salad spinners, toy tops, and centrifuges, but recent research suggests a way to harness rotation for the future of mankind's energy supply. In papers published in Physics of Plasmas in May and Physical Review Letters this month, Timothy Stoltzfus-Dueck, a physicist at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL), demonstrated a novel method that scientists can use to manipulate the intrinsic – or self-generated – rotation of hot, charged plasma gas within fusion facilities called tokamaks.

X marks the spot: Researchers confirm novel method for controlling plasma rotation to improve fusion performance

Rotation is key to the performance of salad spinners, toy tops, and centrifuges, but recent research suggests a way to harness rotation for the future of mankind's energy supply. In papers published in Physics of Plasmas in May and Physical Review Letters this month, Timothy Stoltzfus-Dueck, a physicist at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL), demonstrated a novel method that scientists can use to manipulate the intrinsic – or self-generated – rotation of hot, charged plasma gas within fusion facilities called tokamaks.

COLLOQUIUM: ITER and its Diagnostics – Rising to the Challenge

The ITER project is now well underway with many teams completing various aspects of the design and working on the actual construction. This device will push several boundaries from those currently existing. As a result, several technologies need to be developed or extended. This is especially true for the systems or diagnostics that measure the performance and provide the control signals for this device.

COLLOQUIUM: Handling Plasma Wall Interactions on ITER

Although the ITER machine design is essentially complete, with almost all major systems  into the procurement phase, there are many physics issues which remain open and require continued investigation during the machine construction years in preparation for both early operation and the high performance burning plasma phases.  Boundary physics and the general area of plasma-material interactions are no exception.

Engineer Russ Feder leads development of diagnostic tools for US ITER as physicist Dave Johnson shifts to part-time work

In a rare transition, engineer Russ Feder has stepped into a management job that a distinguished physicist last held. Feder leads PPPL’s development of all diagnostic tools for US ITER, which manages U.S. contributions to the international ITER experiment, succeeding physicist Dave Johnson in that role. “I’m excited to keep the momentum going and proud to be part of our strong team,” Feder said.  “I also recognize the tough challenges of the job and will need the help of our team and the U.S. diagnostics community to be successful.”

Engineer Russ Feder leads development of diagnostic tools for US ITER as physicist Dave Johnson shifts to part-time work

In a rare transition, engineer Russ Feder has stepped into a management job that a distinguished physicist last held. Feder leads PPPL’s development of all diagnostic tools for US ITER, which manages U.S. contributions to the international ITER experiment, succeeding physicist Dave Johnson in that role. “I’m excited to keep the momentum going and proud to be part of our strong team,” Feder said.  “I also recognize the tough challenges of the job and will need the help of our team and the U.S. diagnostics community to be successful.”

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Google+ · Pinterest · Instagram

PPPL is ISO-14001:2004 certified

Princeton University Institutional Compliance Program

© 2015 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000