A Collaborative National Center for Fusion & Plasma Research

Inertial confinement fusion

Subscribe to RSS - Inertial confinement fusion

An experimental process that uses lasers to compress plasma to sufficiently high temperatures and densities for fusion to occur. Such experiments are carried out in places such as the National Ignition Facility at the Lawrence Livermore National Laboratory in Livermore, California.

COLLOQUIUM: In Pursuit of Ignition on the National Ignition Facility

The Inertial Confinement Fusion (ICF) Program is conducting experiments at the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory with the goal of igniting a propagating thermonuclear burn wave in DT fuel leading to energy gain (defined as fusion yield/input laser energy >1). To do this the NIF laser delivers up to ~ 2 MJ of energy to a hohlraum (cylindrical cavity) which generates x-rays that implode a ~2 mm diameter spherical capsule filled with a solid layer of cryogenic deuterium-tritium (DT) fuel.

Fusion through the eyes of a veteran science journalist

Author Daniel Clery recently published “A Piece of the Sun,” a 320-page narrative of the history of fusion research and the personalities who have devoted their careers to it. Clery is a United Kingdom-based reporter for Science magazine who holds a bachelor’s degree in theoretical physics from York University and has covered fusion for more than a decade. While hardly an uncritical flag-waver for fusion, he recognizes its vast potential. He discussed his new book and the future of fusion with PPPL Science Writer John Greenwald.

Praise and suggestions for fusion research from a utility industry think tank

Research to develop fusion energy has shown “significant progress” in many areas, according to a new report from the Electric Power Research Institute (EPRI), a think tank whose members represent some 90 percent of the electricity produced in the United States. At the same time, the report said that a commercial fusion power plant is at least 30 years away, and called for more research on the engineering challenges.

Ronald C Davidson

Ronald Davidson heads PPPL research on charged particle beam dynamics and has made numerous fundamental theoretical contributions to pure and applied plasma physics. Professor Davidson served as director of PPPL from 1991 to 1996 and as director of the MIT Plasma Fusion Center from 1978 to 1988, and has written more than 450 journal articles and books. He has chaired the American Physical Society's Division of Plasma Physics and Division of Particle Beams, and has participated in numerous national and international advisory and review committees on plasma physics and fusion research.

Stewart Prager

Stewart Prager is the sixth director of PPPL. He joined the Laboratory in 2009 after a long career at the University of Wisconsin in Madison. At Wisconsin, he led research on the “Madison Symmetric Torus” (MST) experiment and headed a center that studied plasmas in both the laboratory and the cosmos. He also co-discovered the “bootstrap current” there—a key finding that has influenced the design of today’s tokamaks. He earned his PhD in plasma physics from Columbia University.

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Google+ · Pinterest · Instagram

PPPL is ISO-14001:2004 certified

© 2014 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000