A Collaborative National Center for Fusion & Plasma Research

Inertial confinement fusion

Subscribe to RSS - Inertial confinement fusion

An experimental process that uses lasers to compress plasma to sufficiently high temperatures and densities for fusion to occur. Such experiments are carried out in places such as the National Ignition Facility at the Lawrence Livermore National Laboratory in Livermore, California.

Stewart Prager

Stewart Prager is the sixth director of PPPL. He joined the Laboratory in 2009 after a long career at the University of Wisconsin in Madison. At Wisconsin, he led research on the “Madison Symmetric Torus” (MST) experiment and headed a center that studied plasmas in both the laboratory and the cosmos. He also co-discovered the “bootstrap current” there—a key finding that has influenced the design of today’s tokamaks. He earned his PhD in plasma physics from Columbia University.

PPPL researchers combine quantum mechanics and Einstein’s theory of special relativity to clear up puzzles in plasma physics

Among the intriguing issues in plasma physics are those surrounding X-ray pulsars — collapsed stars that orbit around a cosmic companion and beam light at regular intervals, like lighthouses in the sky.  Physicists want to know the strength of the magnetic field and density of the plasma that surrounds these pulsars, which can be millions of times greater than the density of plasma in stars like the sun.

PPPL researchers combine quantum mechanics and Einstein’s theory of special relativity to clear up puzzles in plasma physics

Among the intriguing issues in plasma physics are those surrounding X-ray pulsars — collapsed stars that orbit around a cosmic companion and beam light at regular intervals, like lighthouses in the sky.  Physicists want to know the strength of the magnetic field and density of the plasma that surrounds these pulsars, which can be millions of times greater than the density of plasma in stars like the sun.

design a high-resolution diagnostic system for the National Ignition Facility

Two U.S. Department of Energy (DOE) laboratories working on very different types of fusion experiments have begun a novel collaboration. Under the arrangement, the DOE’s Princeton Plasma Physics Laboratory (PPPL) will design a diagnostic system to provide high-resolution analysis of research on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL). This work is supported by the DOE Office of Science and LLNL.

PPPL to design a high-resolution diagnostic system for the National Ignition Facility

Two U.S. Department of Energy (DOE) laboratories working on very different types of fusion experiments have begun a novel collaboration. Under the arrangement, the DOE’s Princeton Plasma Physics Laboratory (PPPL) will design a diagnostic system to provide high-resolution analysis of research on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL). This work is supported by the DOE Office of Science and LLNL.

PPPL’s dynamic diagnostic duo

Kenneth Hill and Manfred Bitter are scientific pioneers who have collaborated seamlessly for more than 35 years. Together they have revolutionized a key instrument in the quest to harness fusion energy — a device called an X-ray crystal spectrometer that is used around the world to reveal strikingly detailed information about the hot, charged plasma gas that fuels fusion reactions.

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Google+ · Pinterest · Instagram · Flipboard

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy

© 2016 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000