A Collaborative National Center for Fusion & Plasma Research

Fusion reactor design

Subscribe to RSS - Fusion reactor design

The design of devices that use powerful magnetic fields to control plasma so fusion can take place. The most widely used magnetic confinement device is the tokamak, followed by the stellarator.

New imaging technique provides improved insight into controlling the plasma in fusion experiments

 A key issue for the development of fusion energy to generate electricity is the ability to confine the superhot, charged plasma gas that fuels fusion reactions in magnetic devices called tokamaks. This gas is subject to instabilities that cause it to leak from the magnetic fields and halt fusion reactions.

COLLOQUIUM: Spitzer’s 100th: Founding PPPL & Pioneering Work in Fusion Energy

Lyman Spitzer, Jr. made major contributions in several fields of astrophysics, plasma physics, and fusion energy. He invented the novel stellarator concept for confining plasmas for fusion, and was an early proponent of putting telescopes in space. This talk will briefly review some of Spitzer's pioneering contributions in fusion, including a pictorial history from his founding of PPPL to TFTR's achievement of 10 megawatts of fusion power. Prof. Kulsrud will provide some personal stories about his early days of working with Spitzer.

Multinational achievement: PPPL collaborates on record fusion plasma in tokamak in China

A multinational team led by Chinese researchers in collaboration with U.S. and European partners has successfully demonstrated a novel technique for suppressing instabilities that can cut short the life of controlled fusion reactions. The team, headed by researchers at the Institute of Plasma Physics in the Chinese Academy of Sciences (ASIPP), combined the new technique with a method that the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL) has developed for protecting the walls that surround the hot, charged plasma gas that fuels fusion reactions.

COLLOQUIUM: DIII-D Explorations of Fusion Science to Prepare for ITER and FNSF

Recent DIII-D research has provided significant new information for the physics basis of key scientific issues for successful operation of ITER and future steady state fusion tokamaks, including control of edge localized modes (ELMs), plasma instabilities, disruptions, plasma exhaust fluxes and the development of operational scenarios. This talk will summarize progress and outline plans for future research, including opportunities for involvement in the 2014 research program.

Celebrating Lyman Spitzer, the father of PPPL and the Hubble Space Telescope

Princeton astrophysicist Lyman Spitzer Jr. (1914-1997) was among the 20th Century’s most visionary scientists. His major influences range from founding the Princeton Plasma Physics Laboratory (PPPL) and its quest for fusion energy, to inspiring the development of the Hubble Space Telescope and its images of the far corners of the universe.

Premiere issue of "Quest" magazine details PPPL's strides toward fusion energy and advances in plasma science

Welcome to the premiere issue of Quest, the annual magazine of the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL). We are pleased to provide this news of our strides in advancing research into fusion energy and plasma science—two topics of vital interest to the United States and the world.


U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Google+ · Pinterest · Instagram · Flipboard

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy

© 2017 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000