A Collaborative National Center for Fusion & Plasma Research

Fusion reactor design

Subscribe to RSS - Fusion reactor design

The design of devices that use powerful magnetic fields to control plasma so fusion can take place. The most widely used magnetic confinement device is the tokamak, followed by the stellarator.

Physicist Tyler Abrams models lithium erosion in tokamaks

The world of fusion energy is a world of extremes. For instance, the center of the ultrahot plasma contained within the walls of doughnut-shaped fusion machines known as tokamaks can reach temperatures well above the 15 million degrees Celsius core of the sun. And even though the portion of the plasma closer to the tokamak's inner walls is 10 to 20 times cooler, it still has enough energy to erode the layer of liquid lithium that may be used to coat components that face the plasma in future tokamaks.

DOE’s Ed Synakowski traces key discoveries in the quest for fusion energy

The path to creating sustainable fusion energy as a clean, abundant and affordable source of electric energy has been filled with “aha moments” that have led to a point in history when the international fusion experiment, ITER, is poised to produce more fusion energy than it uses when it is completed in 15 to 20 years, said Ed Synakowski, associate director of Science for Fusion Energy Sciences at the U.S. Department of Energy (DOE). 

DOE’s Ed Synakowski traces key discoveries in the quest for fusion energy

The path to creating sustainable fusion energy as a clean, abundant and affordable source of electric energy has been filled with “aha moments” that have led to a point in history when the international fusion experiment, ITER, is poised to produce more fusion energy than it uses when it is completed in 15 to 20 years, said Ed Synakowski, associate director of Science for Fusion Energy Sciences at the U.S. Department of Energy (DOE).

PPPL, Princeton University physicists join German Chancellor Angela Merkel at Wendelstein 7-X celebration

Princeton Plasma Physics Laboratory (PPPL) physicists collaborating on the Wendelstein 7-X (W 7-X) stellarator fusion energy device in Greifswald, Germany, were on hand for the Feb. 3 celebration when German Chancellor Angela Merkel pushed a button to produce a hydrogen-fueled superhot gas called a plasma. The occasion officially recognized a device that is the largest and most advanced fusion experiment of its kind in the world.

Top-5 Achievements at the Princeton Plasma Physics Laboratory in 2015

From launching the most powerful spherical tokamak on Earth to discovering a mechanism that halts solar eruptions, scientists at the U.S. Department of Energy’s Princeton Plasma Physics Laboratory advanced the boundaries of clean energy and plasma science research in 2015. Here, in no particular order, are our picks for the Top-5 developments of the year:

PPPL engineers complete the design of Wendelstein 7-X scraper unit

Engineers at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) have finished designing a novel component for the Wendelstein 7-X (W7-X) stellarator, which recently opened at the Max Planck Institute of Plasma Physics (IPP) in Griefswald, Germany. Known as a "test divertor unit (TDU) scraper element," the component intercepts some of the heat flowing towards the divertor — a part of the machine that collects heat and particles as they escape from the plasma before they hit the stellarator wall or degrade the plasma's performance.

PPPL engineers complete the design of Wendelstein 7-X scraper unit

Engineers at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) have finished designing a novel component for the Wendelstein 7-X (W7-X) stellarator, which recently opened at the Max Planck Institute of Plasma Physics (IPP) in Griefswald, Germany. Known as a "test divertor unit (TDU) scraper element," the component intercepts some of the heat flowing towards the divertor — a part of the machine that collects heat and particles as they escape from the plasma before they hit the stellarator wall or degrade the plasma's performance.

PPPL physicists simulate innovative method for starting up tokamaks without using a solenoid

Scientists at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) have produced self-consistent computer simulations that capture the evolution of an electric current inside fusion plasma without using a central electromagnet, or solenoid. The simulations of the process, known as non-inductive current ramp-up, were performed using TRANSP, the gold-standard code developed at PPPL. The results were published in October 2015 in Nuclear Fusion. The research was supported by the DOE Office of Science.

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Google+ · Pinterest · Instagram · Flipboard

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy

© 2016 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000