A Collaborative National Center for Fusion & Plasma Research

Fusion reactor design

Subscribe to RSS - Fusion reactor design

The design of devices that use powerful magnetic fields to control plasma so fusion can take place. The most widely used magnetic confinement device is the tokamak, followed by the stellarator.

PPPL engineers complete the design of Wendelstein 7-X scraper unit

Engineers at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) have finished designing a novel component for the Wendelstein 7-X (W7-X) stellarator, which recently opened at the Max Planck Institute of Plasma Physics (IPP) in Griefswald, Germany. Known as a "test divertor unit (TDU) scraper element," the component intercepts some of the heat flowing towards the divertor — a part of the machine that collects heat and particles as they escape from the plasma before they hit the stellarator wall or degrade the plasma's performance.

PPPL engineers complete the design of Wendelstein 7-X scraper unit

Engineers at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) have finished designing a novel component for the Wendelstein 7-X (W7-X) stellarator, which recently opened at the Max Planck Institute of Plasma Physics (IPP) in Griefswald, Germany. Known as a "test divertor unit (TDU) scraper element," the component intercepts some of the heat flowing towards the divertor — a part of the machine that collects heat and particles as they escape from the plasma before they hit the stellarator wall or degrade the plasma's performance.

PPPL physicists simulate innovative method for starting up tokamaks without using a solenoid

Scientists at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) have produced self-consistent computer simulations that capture the evolution of an electric current inside fusion plasma without using a central electromagnet, or solenoid. The simulations of the process, known as non-inductive current ramp-up, were performed using TRANSP, the gold-standard code developed at PPPL. The results were published in October 2015 in Nuclear Fusion. The research was supported by the DOE Office of Science.

PPPL scientists unveil their latest results at the 57th Annual Meeting of the American Physical Society Division of Plasma Physics

More than 1,750 researchers from around the world, including scientists from the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL), have gathered in Savannah, Georgia, this week for the 57th Annual Meeting of the American Physical Society’s Division of Plasma Physics. Researchers at the five-day conference, which ends Nov. 20, will attend nine half-day sessions featuring nearly 1,000 talks on subjects ranging from space and astrophysical plasmas to the challenges of producing magnetic fusion energy.

PPPL scientists unveil their latest results at the 57th Annual Meeting of the American Physical Society Division of Plasma Physics

More than 1,750 researchers from around the world, including scientists from the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL), have gathered in Savannah, Georgia, this week for the 57th Annual Meeting of the American Physical Society’s Division of Plasma Physics. Researchers at the five-day conference, which ends Nov. 20, will attend nine half-day sessions featuring nearly 1,000 talks on subjects ranging from space and astrophysical plasmas to the challenges of producing magnetic fusion energy.

COLLOQUIUM: The Lockheed Martin Compact Fusion Reactor

Lockheed Martin Skunkworks is developing a compact fusion reactor concept, CFR. The novel magnetic cusp configuration would allow for stable plasmas in a geometry amenable to economical power plants and power sources. The details of the CFR configuration will be discussed along with a status of the current plasma confinement experiments underway at Lockheed. The presentation will also touch on the potential of a fast development path and challenges to bring such a device to fruition.

For a brief discussion of the project and images of the hardware:

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Google+ · Pinterest · Instagram

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

© 2016 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000