A Collaborative National Center for Fusion & Plasma Research

Fusion reactor design

Subscribe to RSS - Fusion reactor design

The design of devices that use powerful magnetic fields to control plasma so fusion can take place. The most widely used magnetic confinement device is the tokamak, followed by the stellarator.

Giant structures called plasmoids could simplify the design of future tokamaks

Researchers at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) have for the first time simulated the formation of structures called "plasmoids" during Coaxial Helicity Injection (CHI), a process that could simplify the design of fusion facilities known as tokamaks. The findings, reported in the journal Physical Review Letters, involve the formation of plasmoids in the hot, charged plasma gas that fuels fusion reactions.

Giant structures called plasmoids could simplify the design of future tokamaks

Researchers at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) have for the first time simulated the formation of structures called "plasmoids" during Coaxial Helicity Injection (CHI), a process that could simplify the design of fusion facilities known as tokamaks. The findings, reported in the journal Physical Review Letters, involve the formation of plasmoids in the hot, charged plasma gas that fuels fusion reactions.

Princeton and PPPL projects selected to run on super-powerful computer to be delivered to Oak Ridge Leadership Computing Facility

Three Princeton University-related computer programs have been chosen to run on a new supercomputer that will deliver enhanced scientific findings when it begins crunching numbers in 2018. The projects, consisting of a Princeton Department of Geosciences program and two studies involving the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL), encompass high-performance computer codes to map the interior of the Earth and advance the scientific basis for developing fusion energy to generate electricity.

Princeton and PPPL projects selected to run on super-powerful computer to be delivered to Oak Ridge Leadership Computing Facility

Three Princeton University-related computer programs have been chosen to run on a new supercomputer that will deliver enhanced scientific findings when it begins crunching numbers in 2018. The projects, consisting of a Princeton Department of Geosciences program and two studies involving the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL), encompass high-performance computer codes to map the interior of the Earth and advance the scientific basis for developing fusion energy to generate electricity.

Nat Fisch Wins Europe's Alfvén Prize

The European Physical Society (EPS) has named physicist Nat Fisch winner of the 2015 Hannes Alfvén Prize. Fisch, director of the Princeton Program in Plasma Physics and professor and associate chair of astrophysical sciences at Princeton University, will receive the honor in June at the at the annual meeting of the EPS Division of Plasma Physics in Lisbon, Portugal.

Nat Fisch Wins Europe's Alfvén Prize

The European Physical Society (EPS) has named physicist Nat Fisch winner of the 2015 Hannes Alfvén Prize. Fisch, director of the Princeton Program in Plasma Physics and professor and associate chair of astrophysical sciences at Princeton University, will receive the honor in June at the at the annual meeting of the EPS Division of Plasma Physics in Lisbon, Portugal.

Engineer Russ Feder leads development of diagnostic tools for US ITER as physicist Dave Johnson shifts to part-time work

In a rare transition, engineer Russ Feder has stepped into a management job that a distinguished physicist last held. Feder leads PPPL’s development of all diagnostic tools for US ITER, which manages U.S. contributions to the international ITER experiment, succeeding physicist Dave Johnson in that role. “I’m excited to keep the momentum going and proud to be part of our strong team,” Feder said.  “I also recognize the tough challenges of the job and will need the help of our team and the U.S. diagnostics community to be successful.”

Engineer Russ Feder leads development of diagnostic tools for US ITER as physicist Dave Johnson shifts to part-time work

In a rare transition, engineer Russ Feder has stepped into a management job that a distinguished physicist last held. Feder leads PPPL’s development of all diagnostic tools for US ITER, which manages U.S. contributions to the international ITER experiment, succeeding physicist Dave Johnson in that role. “I’m excited to keep the momentum going and proud to be part of our strong team,” Feder said.  “I also recognize the tough challenges of the job and will need the help of our team and the U.S. diagnostics community to be successful.”

COLLOQUIUM: 20+1 Years of Research on the Alcator C-Mod Tokamak

This talk will summarize the achievements of research on the Alcator C-Mod tokamak and place that research in the context of the quest for practical fusion energy. C-Mod is a compact, high-field tokamak, whose unique design and operating parameters have produced a wealth of new and important results since it began operation in 1993, contributing data that extends tests of critical physical models into new parameter ranges and into new regimes.

Hong Qin promoted to executive dean at the University of Science and Technology of China

Hong Qin bestrides the globe as a leading scientist and educator. For the past four years he has shuttled between PPPL and a teaching post at the University of Science and Technology of China (USTC), which named him executive dean of its School of Nuclear Science and Technology in October. Hong takes up the position while maintaining his agenda as a principal research physicist in the PPPL Theory Department and his teaching in the Program in Plasma Physics at Princeton University, where he is a lecturer with the rank of professor in the Department of Astrophysical Sciences.

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Google+ · Pinterest · Instagram

PPPL is ISO-14001:2004 certified

Princeton University Institutional Compliance Program

© 2015 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000