A Collaborative National Center for Fusion & Plasma Research

Fusion reactor design

Subscribe to RSS - Fusion reactor design

The design of devices that use powerful magnetic fields to control plasma so fusion can take place. The most widely used magnetic confinement device is the tokamak, followed by the stellarator.

Innovative design using loops of liquid metal can improve future fusion power plants, scientists say

Researchers led by the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have proposed an innovative design to improve the ability of future fusion power plants to generate safe, clean and abundant energy in a steady state, or constant, manner. The design uses loops of liquid lithium to clean and recycle the tritium, the radioactive hydrogen isotope that fuels fusion reactions, and to protect the divertor plates from intense exhaust heat from the tokamak that contains the reactions.

New model of plasma stability could help researchers predict and avoid disruptions in fusion machines

Physicists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have helped develop a new computer model of plasma stability in doughnut-shaped fusion machines known as tokamaks. The new model incorporates recent findings gathered from related research efforts and simplifies the physics involved so computers can process the program more quickly. The model could help scientists predict when a plasma might become unstable and then avoid the underlying conditions. 

Scientists at PPPL further understanding of a process that causes heat loss in fusion devices

Everyone knows that the game of billiards involves balls careening off the sides of a pool table — but few people may know that the same principle applies to fusion reactions. How charged particles like electrons and atomic nuclei that make up plasma interact with the walls of doughnut-shaped devices known as tokamaks helps determine how efficiently fusion reactions occur. Specifically, in a phenomenon known as secondary electron emission (SEE), electrons strike the surface of the wall, causing other electrons to be emitted.

New feedback system could allow greater control over fusion plasma

Like a potter shaping clay as it spins on a wheel, physicists use magnetic fields and powerful particle beams to control and shape the plasma as it twists and turns through a fusion device. Now a physicist has created a new system that will let scientists control the energy and rotation of plasma in real time in a doughnut-shaped machine known as a tokamak.

New feedback system could allow greater control over fusion plasma

Like a potter shaping clay as it spins on a wheel, physicists use magnetic fields and powerful particle beams to control and shape the plasma as it twists and turns through a fusion device. Now a physicist has created a new system that will let scientists control the energy and rotation of plasma in real time in a doughnut-shaped machine known as a tokamak.

Advanced fusion code led by PPPL selected to participate in Early Science Programs on three new DOE Office of Science pre-exascale supercomputers

U.S. Department of Energy (DOE) high-performance computer sites have selected a dynamic fusion code, led by physicist C.S. Chang of the DOE’s Princeton Plasma Physics Laboratory (PPPL), for optimization on three powerful new supercomputers. The PPPL-led code was one of only three codes out of more than 30 science and engineering programs selected to participate in Early Science programs  on all three new supercomputers, which will serve as forerunners for even more powerful exascale machines that are to begin operating in the United States in the early 2020s.

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Google+ · Pinterest · Instagram · Flipboard

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy

© 2017 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000