A Collaborative National Center for Fusion & Plasma Research

Fusion energy

Subscribe to RSS - Fusion energy

The energy released when two atomic nuclei fuse together. This process powers the sun and stars.  Read more

Reaching new heights: Physicists improve the vertical stability of superconducting Korean fusion device

A major challenge facing the development of fusion energy is maintaining the ultra-hot plasma that fuels fusion reactions in a steady state, or sustainable, form using superconducting magnetic coils to avoid the tremendous power requirement of copper coils. While superconductors can allow a fusion reactor to operate indefinitely, controlling the plasma with superconductors presents a challenge because engineering constraints limit how quickly such magnetic coils can adjust when compared to copper coils that do not have the same constraints.

The blob that ate the tokamak: Physicists gain understanding of how bubbles at the edge of plasmas can drain heat and reduce fusion reaction efficiency

To fuse hydrogen atoms into helium, doughnut-shaped devices called tokamaks must maintain the heat of the ultrahot plasma they control. But like boiling water, plasma has blobs, or bubbles, that percolate within the plasma edge, reducing the performance of the plasma by taking away heat that sustains the fusion reactions.

The blob that ate the tokamak: Physicists gain understanding of how bubbles at the edge of plasmas can drain heat and reduce fusion reaction efficiency

To fuse hydrogen atoms into helium, doughnut-shaped devices called tokamaks must maintain the heat of the ultrahot plasma they control. But like boiling water, plasma has blobs, or bubbles, that percolate within the plasma edge, reducing the performance of the plasma by taking away heat that sustains the fusion reactions.

Innovative design using loops of liquid metal can improve future fusion power plants, scientists say

Researchers led by the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have proposed an innovative design to improve the ability of future fusion power plants to generate safe, clean and abundant energy in a steady state, or constant, manner. The design uses loops of liquid lithium to clean and recycle the tritium, the radioactive hydrogen isotope that fuels fusion reactions, and to protect the divertor plates from intense exhaust heat from the tokamak that contains the reactions.

PPPL takes detailed look at 2-D structure of turbulence in tokamaks

A key hurdle for fusion researchers is understanding turbulence, the ripples and eddies that can cause the superhot plasma that fuels fusion reactions to leak heat and particles and keep fusion from taking place. Comprehending and reducing turbulence will facilitate the development of fusion as a safe, clean and abundant source of energy for generating electricity from power plants around the world.

PPPL takes detailed look at 2-D structure of turbulence in tokamaks

A key hurdle for fusion researchers is understanding turbulence, the ripples and eddies that can cause the superhot plasma that fuels fusion reactions to leak heat and particles and keep fusion from taking place. Comprehending and reducing turbulence will facilitate the development of fusion as a safe, clean and abundant source of energy for generating electricity from power plants around the world.

PPPL and General Atomics team up to make TRANSP code widely available

Plasma transport analysis, the study of how plasma particles, heat and momentum drift across magnetic field lines, is a necessary first step for understanding how well fusion reactors are performing.  Teams of scientists from the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) and General Atomics (GA) have joined forces to bring PPPL’s premier transport code, TRANSP, to beginning users and experts alike.

PPPL and General Atomics team up to make TRANSP code widely available

Plasma transport analysis, the study of how plasma particles, heat and momentum drift across magnetic field lines, is a necessary first step for understanding how well fusion reactors are performing.  Teams of scientists from the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) and General Atomics (GA) have joined forces to bring PPPL’s premier transport code, TRANSP, to beginning users and experts alike.

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Google+ · Pinterest · Instagram · Flipboard

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy

© 2017 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000