A Collaborative National Center for Fusion & Plasma Research

Engineering

Subscribe to RSS - Engineering

This function manages the design, fabrication and operation of PPPL experimental devices, and oversees the Laboratory’s facilities and its electrical and infrastructure systems.

Scientists develop a path toward improved high-energy accelerators

Physicists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL), in collaboration with researchers in South Korea and Germany, have developed a theoretical framework for improving the stability and intensity of particle accelerator beams. Scientists use the high-energy beams, which must be stable and intense to work effectively, to unlock the ultimate structure of matter.  Physicians use medical accelerators to produce beams that can zap cancer cells.

PPPL and Max Planck physicists confirm the precision of magnetic fields in the most advanced stellarator in the world

Physicist Sam Lazerson of the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) has teamed with German scientists to confirm that the Wendelstein 7-X (W7-X) fusion energy device called a stellarator in Greifswald, Germany, produces high-quality magnetic fields that are consistent with their complex design.

PPPL and Max Planck physicists confirm the precision of magnetic fields in the most advanced stellarator in the world

Physicist Sam Lazerson of the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) has teamed with German scientists to confirm that the Wendelstein 7-X (W7-X) fusion energy device called a stellarator in Greifswald, Germany, produces high-quality magnetic fields that are consistent with their complex design.

PPPL senior physicist Wei-li Lee honored at week-long symposium

Physicists from around the world gathered at the University of California, Irvine this past summer for a symposium in honor of Wei-li Lee, a senior physicist at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL). The week-long event, held from July 18-22, focused on gyrokinetic simulation — a technique Lee invented in the 1980s to model the behavior of particles within plasma, the ultrahot gas composed of electrons and atomic nuclei that fuels fusion reactions.

PPPL physicists build diagnostic that measures plasma velocity in real time

Physicists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have developed a diagnostic that provides crucial real-time information about the ultrahot plasma swirling within doughnut-shaped fusion machines known as tokamaks. This device monitors four locations in a plasma, enabling the diagnostic to make rapid calculations of how the velocity profiles of ions inside the plasma evolves over time.

PPPL physicists build diagnostic that measures plasma velocity in real time

Physicists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have developed a diagnostic that provides crucial real-time information about the ultrahot plasma swirling within doughnut-shaped fusion machines known as tokamaks. This device monitors four locations in a plasma, enabling the diagnostic to make rapid calculations of how the velocity profiles of ions inside the plasma evolves over time.

PPPL physicist receives ExxonMobil grant for plasma research

Physicist Egemen Kolemen, who holds positions at Princeton University and the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL), is sharing a grant from ExxonMobil to research whether plasma could reduce greenhouse gas emissions associated with oil wells. Plasma is partially ionized gas that has separated into electrons and atomic nuclei, and can be found on Earth as lightning, neon lights, and many other forms. Stars and 99 percent of the visible universe are made of plasma.

PPPL physicist receives ExxonMobil grant for plasma research

Physicist Egemen Kolemen, who holds positions at Princeton University and the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL), is sharing a grant from ExxonMobil to research whether plasma could reduce greenhouse gas emissions associated with oil wells. Plasma is partially ionized gas that has separated into electrons and atomic nuclei, and can be found on Earth as lightning, neon lights, and many other forms. Stars and 99 percent of the visible universe are made of plasma.

PPPL physicists win funding to lead a DOE exascale computing project

A proposal from scientists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) has been chosen as part of a national initiative to develop the next generation of supercomputers. Known as the Exascale Computing Project (ECP), the initiative will include a focus on exascale-related software, applications, and workforce training.

PPPL inventors honored for device that creates medical isotope vital for diagnosing diseases

A team of scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) has won the 2016 Edison Patent Award for inventing an on-demand method to create a badly needed isotope used routinely in medical imaging devices to diagnose diseases such as cancer and heart disease.

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Google+ · Pinterest · Instagram · Flipboard

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy

© 2017 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000