A Collaborative National Center for Fusion & Plasma Research

Engineering

Subscribe to RSS - Engineering

This function manages the design, fabrication and operation of PPPL experimental devices, and oversees the Laboratory’s facilities and its electrical and infrastructure systems.

New engineering head Valeria Riccardo has two decades of experience on fusion experiments

Valeria Riccardo, new head of engineering at the Princeton Plasma Physics Laboratory, is a United Kingdom transplant who comes to the position with more than 20 years of experience in project management, fusion design, and analysis on two fusion devices in the U.K. that are similar to the U.S. Department of Energy’s Princeton Plasma Physics Laboratory’s National Spherical Torus Experiment-Upgrade (NSTX-U).  

PPPL scientist uncovers physics behind plasma-etching process

Physicist Igor Kaganovich at the Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) and collaborators have uncovered some of the physics that make possible the etching of silicon computer chips, which power cell phones, computers, and a huge range of electronic devices. Specifically, the team found how electrically charged gas known as plasma makes the etching process more effective than it would otherwise be.

PPPL scientist uncovers physics behind plasma-etching process

Physicist Igor Kaganovich at the Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) and collaborators have uncovered some of the physics that make possible the etching of silicon computer chips, which power cell phones, computers, and a huge range of electronic devices. Specifically, the team found how electrically charged gas known as plasma makes the etching process more effective than it would otherwise be.

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

Physicist Fatima Ebrahimi at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) has published a paper showing that magnetic reconnection — the process in which magnetic field lines snap together and release energy — can be triggered by motion in nearby magnetic fields. By running computer simulations, Ebrahimi gathered evidence indicating that the wiggling of atomic particles and magnetic fields within electrically charged gas known as plasma can spark the onset of reconnection, a process that, when it occurs on the sun, can spew plasma into space.

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

Physicist Fatima Ebrahimi at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) has published a paper showing that magnetic reconnection — the process in which magnetic field lines snap together and release energy — can be triggered by motion in nearby magnetic fields. By running computer simulations, Ebrahimi gathered evidence indicating that the wiggling of atomic particles and magnetic fields within electrically charged gas known as plasma can spark the onset of reconnection, a process that, when it occurs on the sun, can spew plasma into space. 

Scientists develop a path toward improved high-energy accelerators

Physicists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL), in collaboration with researchers in South Korea and Germany, have developed a theoretical framework for improving the stability and intensity of particle accelerator beams. Scientists use the high-energy beams, which must be stable and intense to work effectively, to unlock the ultimate structure of matter.  Physicians use medical accelerators to produce beams that can zap cancer cells.

Scientists develop a path toward improved high-energy accelerators

Physicists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL), in collaboration with researchers in South Korea and Germany, have developed a theoretical framework for improving the stability and intensity of particle accelerator beams. Scientists use the high-energy beams, which must be stable and intense to work effectively, to unlock the ultimate structure of matter.  Physicians use medical accelerators to produce beams that can zap cancer cells.

PPPL and Max Planck physicists confirm the precision of magnetic fields in the most advanced stellarator in the world

Physicist Sam Lazerson of the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) has teamed with German scientists to confirm that the Wendelstein 7-X (W7-X) fusion energy device called a stellarator in Greifswald, Germany, produces high-quality magnetic fields that are consistent with their complex design.

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Google+ · Pinterest · Instagram · Flipboard

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy

© 2017 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000