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Edge plasma physics is important for fusion research
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• What is the “edge”?
– from just inside the separatrix  (~ a few cm’s) 

to the wall
– physics is highly nonlinear and turbulent
– physics is “generic” to all confined plasmas

• Why is it important for ITER ?
– Pedestal parameters ⇒ confinement and Q
– Cross-field transport ⇒

• PFC (“wall”) damage
• short-circuit divertor? 
• wall content (tritium inventory)
• impurity transport to core
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Edge = “extreme physics”
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• Couples plasma, atomic and solid state physics
• Fully-developed turbulence regime

– no space scale separation of background and 
fluctuations

– convective (vs. diffusive) transport
– strong nonlinearity [O(1) fluctuations]

• Turbulence ⇒ mesoscale coherent structures
⇒ intermittent transport
– non-Gaussian statistics
– universal for confined plasmas

Antar et al., Phys. Plasmas 10, 419 (2003) 
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2D imaging techniques show coherent structures 
in the edge and scrape-off-layer

• Gas Puff Imaging on C-Mod, 
NSTX and other experiments
– Zweben, Terry

• Beam Emission Spectroscopy 
(BES) on DIII-D
– McKee

• large (cm) scale objects emerge 
from near the separatrix and 
propagate radially outwards 
(“blobs”)

J.L. Terry, S. Zweben et al.,

Phys. Plasmas 2003 [C-Mod]



The “blob model” explains the outwards convection
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• curvature
Krasheninnikov 2001
D'Ippolito 2002

• ∇ neutral friction 
Krasheninnikov 2003

• centrifugal 
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• blob = flux tube containing (much) more 
plasma than its surroundings

• filamentary along B
• cm-scale across B 

blob convection mechanism
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Nonlinear saturation of linear instability
⇒ coherent objects (blobs, holes)
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• experiments and 
simulations show that
nonlinear saturation of 
linear instability at location 
of max γ  ⇒ blobs

• blobs move by the same 
R-L  mechanism  
(Krasheninnikov, 2001)

• “blob correspondence 
principle” (Myra, D’Ippolito, 
2005)
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Model for theory & simulations
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• The minimal model for studying turbulent transport is the coupled vorticity 
and continuity equations (conservation of charge and particles)

• Dimensionless analysis on these equations gives the scalings of the blob 
velocity in various parameter (stability) regimes

vx = vx(blob size, collisionality, magnetic shear, X-point fanning,…)

• This analysis cannot give the blob creation rate (or particle flux)

• Simulations have been carried out to study various questions:
– radial location and rate of blob generation
– turbulent particle flux (and fraction due to large events, i.e. blobs)
– turbulent statistics
– test the blob correspondence principle, identify dominant regimes



Simulations: density n(x,y) at outer midplane
(4 cases: vary magnetic geometry and parallel resistivity)
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t = 1200
X-pt geometry 

ON or OFF

LOW or HIGH η

• blobs (streamers) are 
generated by turbulence

• || disconnection for high η
⇒ larger growth rate and 

faster transport

Russell et al., 2007 
(submitted to Phys. Plasmas)



Time history of turbulent particle flux (intermittent)
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G: ON,  low η
G: ON,  high η

G: OFF,  low η
G: OFF,  high η

Γ(t) at x = 30 at outer midplane
Note: temporally 

intermittent
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Fluctuation PDFs show skewed, non-Gaussian tails 
⇒ blob transport; PDFs have a universal character

Simulated “probe data” for 
turbulent particle flux Γ 

(Russell et al.) 

Experimental data (Isat)

PDF of flux at x = 30: non-
Gaussian,  insensitive to case , 
similar to experimental data

Antar, Phys. Plasmas 
2003
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Skewness profiles S(x) in simulations
resemble experiment

• Skewness S(x) = <S>y,t measures intermittency of turbulence

DIII-D BES data

Boedo, PoP (2003)

SOLT-TRM code (Russell et al.)
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Turbulent (blob) transport flattens n(x) in far SOL
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G: ON,  low η
G: ON,  high η

G: OFF,  low η
G: OFF,  high η

Simulations show two-
scale SOL density profile 
observed in experiments

(Russell et al., 2007) 

Blob generation zone



Blob creation zone is at the location of 
the maximum linear growth rate
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• blobs created near point where S = 0

• coincides with maximum linear 
mode growth,  γ ∝ | n-1 dn/dx |

Similar behavior for all 4  cases:

Blob

Hole

S = 0



Blob creation rate and “packing fraction”
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Particle flux ∝ blob creation rate, which can be related to a  “packing 
fraction” 0 ≤ f p ≤ 1
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Results for packing fraction
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G: ON,  low η:    fp = 0.21
G: ON,  high η:  fp = 0.41

G: OFF,  low η:   fp = 0.43
G: OFF,  high η:  fp = 0.65

Results for our 4 reference cases at x = 30 show that 

• the packing fraction fp is order unity

• fp increases with resistivity and drops due to X-pt geometry

• 30 - 50% of scaling of the particle flux Γ is due to changes in the 
blob creation rate (fp) 



Analytic model:  Blob heat convection ⇒ density limit
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C-Mod dataModel  (D’Ippolito & Myra, PoP 2006)
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Conclusions
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• For ITER, we need to predict 
fluxes to wall of particles, heat, 
momentum and currents 

• Transport is intermittent with 
large fluctuations (blobs / ELMs 
with δn / n ~ 1)

turbulent 
transport

• Impact on ITER is not yet understood 
but a worldwide effort is underway

• Edge theory, simulations, and 
experiments   ⇒ forces that drive 
instabilities also drive SOL 
transport
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