
The Davidson’s report has defined the field of
High Energy Density Physics

"Discern the physical principles that govern extreme astrophysical 
environments through the laboratory study of high-energy-density 
physics. The committee recommends that the agencies cooperate 
in bringing together the different scientific communities that can 
foster this rapidly developing field."
"Frontiers in High Energy Density Physics" (R. Davidson et al.)
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Challenges in FI: hydrodynamics and particle transport 
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Target designs for direct-drive fast ignition use 
massive wetted foam shells insensitive to fluid instability

ρR≈3g/cm2 ρR≈1.9g/cm2 ρR≈0.7g/cm2

<ρ>≈300-500g/cm3
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Fast-ignition targets require long laser pulses 
and high contrast ratios (~100 to 150) within the 
capabilities of the NIF

TC7379
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2D simulations of
ignition and burn
by 15kJ, 2MeV,
20µm, 10ps
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2D hydro-simulations of ignition by fast electrons 
and burn propagation yield fast ignition gain curves

FI allows for significant gains with a few hundred kJ laser driver
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≈20kJ     P≈25atm

 

α≈1.3   V≈2•107cm/s

C. Zhou, W. Theobald, R. Betti, P.B. Radha, V. Smalyuk, et al, Phys. Rev. Lett. 98: 025004 (2007)

Slow implosions with low adiabat
 

were tested on OMEGA
D-3He fusion proton energy loss measured the high ρR
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• Peak ρR

 

is 0.26g/cm2, the highest ρR

 

to date on OMEGA
• Empty shells would achieve ρR≈0.7g/cm2

 

and stop 4MeV electrons



According to the ponderomotive
 

scaling, ignition laser 
pulses can produce electrons with E>>1MeV that are not 
stopped in the dense core
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Electron range: 2
hot0.6  g/cmR E= ×

Ehot

 

>>1 Electron range greatly exceeds the optimal range for fast ignition
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The minimum PW laser energy for 
ignition  exceeds 100 kJ  for λL

 

=1.05 μm 
and ponderomotive

 
scaling for Ehot
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0.3 26 16 235 71 7.6 0.69
0.5 23 14 105 53 6 0.76

Simulations:
• Gaussian laser pulses
• Maxwellian

 

electrons

300 kJ target

A. Solodov, et al, Phys. Plasmas in Press 



PICLS simulations show that the hot-electron
energy is less than predicted by the
ponderomotive

 
scaling
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I = 1020

 

W/cm2

The energy of the hot-electrons
reaching the core is ≤

 

1MeV

Higher cone densities
lead to less energetic
electrons
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Y. Sentoku, et al, submitted to Phys. Rev. Lett



SHOCK IGNITION

As a tool to improve 
the ignition conditions 
of conventional ICF

Shock Ignition

SI

As a true two-step
ignition process.

Shock FAST ignition

SFI

Requires a relatively
weak shock

Requires a strong
shock



SI.
 

The ignition energy is lower in a non-isobaric
fuel assembly with a peaked

 
pressure profile
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R. Betti, K. Anderson,C. Zhou, J. Perkins, W. Theobald, A. Solodov, Phys. Rev. Lett. 98: 155001 (2007)
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A non-isobaric fuel assembly can be produced
by shocking the target just before peak compression

Simple
planar
model
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Producing a non-isobaric assembly requires
the collision of the ignitor

 
shock with the return shock.

The two colliding shocks have similar pressures. 
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SI.
 

The ignitor
 

shock can be launched 
with a spike of the laser intensity
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SI.
 

The shock ignition concept 
has been tested on OMEGA

EL

 

=17kJ
α≈1.3
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W. Theobald,, 
C. Zhou, 
et al 
(UR-LLE) The neutron yield increases 

considerably when a shock 
is launched at the end of the 
pulse
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SFI.
 

A true 2-step shock-ignition scheme requires 
much greater energy in the shock. Conventional
laser-driven thermal waves are too inefficient.

A spherically-convergent hot-particle driven shock is needed 
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Shock FAST ignition requires an ignitor
 

shock
much stronger than the return shock. OMEGA
size targets can be ignited by a 13kJ shock

GAIN = 9

Ignitor
shock

Ignitor
shock
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Shocks, fast electrons or a combination
of the two can be used to improve the ignition
condition and separate the fuel assembly
from the ignition

FSC

• Implosions of massive shells at low velocity and low adiabat
have been proven effective on OMEGA to assemble large
amount of fusion fuel with high areal

 

densities

• The ponderomative

 

scaling for the fast electron energy leads
to ultra-high electron energy not suitable for fast ignition.

• Shock ignition experiments on OMEGA show improvements
in neutron yields well beyond the predictions of 1D codes 

• A true 2-step ignition based on shock ignition requires a 
strong shock driven by particles (tens of kJ of 20-100keV electrons)
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