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Courant-Snyder
Oscillator with t-dependent frequency invariant (1958)

U+ k(t)u=0. (1)
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| =—+(Wu—wu)" is an invariant.
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\ Envelope equation.

Birkhoff (1908, concept)

W+ R(tW— — = 0.
W

Kulsrud (1957) had two egs.
equivalent to the envelope eq.

Takayama (1983) summarized different
methods for deriving the invariant.




Noether’'s Theorem (1918) links invariants and symmetries

Symmetry in time =» energy conservation

Symmetry in configuration = momentum conservation

What is the symmetry for the Courant-Snyder invariant?



What is a symmetry for a differential equation?
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What is symmetry?
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Symmetry for Eq. (1)

Lie sub-algebras
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Lie algebra and sub-algebras of the symmetry group
(Qin & Davidson 2005)

?! (2D) Wronskian (2D)
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Courant-Snyder
symmetry (3D)

Scaling (1D)



Noether’'s Theorem (1918) links invariants and symmetries

Infinitesimal divergence symmetry:

dé  dB(t,u)
dt  dt

pr®v(L) + L

B(t,u)--- arbitrary function.
L --- Lagrangian.
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Then pr®v(L) = Cé—'f# z:(il—lt' for some function A(t,u),
and | =B - A-L¢ is an invariant.
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Sub-algebras of the infinitesimal divergence symmetry

Infinitesimal divergence symmetry = symmetry
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Courant-Snyder invariant and symmetry

/ﬁ function Envelope equation.
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Envelope eq. is the determining eq. for the Courant-Snyder symmetry.



Symmetry for the envelope equation

e Courant-Snyder symmetry: g,
e The determining equation is another envelope equation.

Theorem 1. For an arbitrary function «(t) and w;, w, satisfying
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where g, and &, are real constants, the quantity
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Symmetry = better algorithm for matched G function.

Select | and C such that
W, (0) = w, (T) and vi4(0) = viry(T).

Only one numerical integration for the envelope equation.

Conventional method needs many.



An example




Conclusions

Symmetry = Courant-Snyder invariant.
Symmetry =» better algorithm for the envelope equation.

Symmetry =» other applications at http://nonneutral.pppl.gov.
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