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Beam physics application ---
 

high energy density physics

Photoionized

 

plasmas in an 
accreting massive black hole

Neutralized drift compression 
experiment for ion beam driven HEDP

Gamma ray bursters

 

experiment 



Beam physics application ---
 

heavy ion fusion

Beams strike “hohlraum,”

 

producing 
x-ray bath for fusion capsules.

 

Beams strike “hohlraum,”

 

producing 
x-ray bath for fusion capsules.



Beam physics application ---
 

modern high intensity accelerators

Spallation

 
Neutron Source

Stanford Linear Coherent Light Source 0.8 -

 
8 KeV



Beam physics application ---
 

light source

Cornell Energy Recovery Linac, 5GeV electron, 10KeV



Vlasov-Maxwell system for high intensity particle beams 

An Introduction to the Physics of Intense Charged Particle Beams

 

in High 
Energy Accelerators, R. C. Davidson and H. Qin, World Scientific (2001) 
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External focusing field:

foc b b b z zm m zβω ω⊥= − −F x e
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Interesting “nonclassical”
 

classical dynamics 

Courant (1958)

Birkhoff

 

(1908)
Envelop equation

Courant-Snyder invariant



Conjucture:

1) There is an exact invariant. 

2) Magnetic moment is asymptotic to it.

Conjucture:

1) There is an exact invariant. 

2) Magnetic moment is asymptotic to it.

Similar to gyromotion
 

in time-dependent, inhomogeneous field? 
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Smooth focusing field:

foc b b b z zm m zβω ω⊥= − −F x e
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Nonlinear Vlasov-Maxwell equations for high intensity beams

Collective dynamics described by the Vlasov

 
equation 

2 3

2 3

4 ( )

4 ( )

b

z b z

e d pf t

A ce d pv f t

φ π

π

∇ = − , , ,

∇ = − , , .

∫

∫

x p

x p

Self-electric and self-magnetic fields self-consistently
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from Maxwell’s equations. 
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 δf particle simulation method reduces noise
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Beam Equilibrium Stability and Transport (BEST) code 

Perturbative particle simulation method to reduce noise. 

Linear eigenmodes and nonlinear evolution. 

2D and 3D equilibrium structure.

Multi-species; electrons and ions; accommodate very large mass ratio.

Multi-time-scales, frequency span a factor of 105. 

3D nonlinear perturbation.

Message Passing Interface

Particle-domain-decomposition. 

Large-scale computing: particle x time-steps ~ 0.5 x 1012.

Scales linearly to 512 processors on IBM-SP3 at NERSC.

NetCDF, HDF5 parallel I/O diagnostics. 

Physics

Computation



Nonlinear equilibrium  
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2D coasting beams 3D bunched beams

Chaotic orbits. 
Linear stability 
theory not possible.
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Nonintegrable
 

particle dynamics in energy isotropic bunched beams
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Global conservation constrains for the nonlinear Vlasov-Maxwell equations.
Determine Class of beam distributions that are stable at high intensity.  

R. C. Davidson, Physical Review Letters 81, 991 (1998). 

Physics of Intense Charged Particle Beams in High Energy Accelerators (World Scientific, 2001), R. 
C. Davidson and H. Qin, Chapter 4; 

Nonlinear stability theorem

Self-field

Focusing field
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A sufficient condition for linear and nonlinear stability is:

where



Long-time nonlinear perturbations

contain 
perturbation 
spectrum
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Collective interior mode excitation

Mode structure confined 
inside the beam

Mode structure confined 
inside the beam

Collective dynamics 
manifest by eigenmodes

 

Collective dynamics 
manifest by eigenmodes
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Collective surface mode excitation 

Dipole mode structure

Dispersion relation:
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One-Component Beams

Harris and Weibel instability driven by temperature anisotropy

Resistive wall instability

Propagation Through Background speices

Two-stream instability
Ion-electron (Electron cloud) instability

Propagation Through Background Plasma

Resistive hose instability
Multispecies Weibel instability 
Multispecies two-stream instability

Collective instabilities in intense charged particle beams 

. T T⊥



Temperature anisotropy is natural in accelerators
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Harris instability by large temperature anisotropy for coasting beams

01.0/|| =⊥bb TT

E. A. Startsev, et al., Physical Review Special Topics Accel. & Beams 8, 124201(2005).

Nonlinear saturation by particle trapping



Energy anisotropic instability for bunched beams

Stronger instability for shorter bunches.
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Instability becomes localized for longer bunches 0.8bs =



Electron-ion two-stream instability

0t =

200/ bt βω=

Surface mode destabilized by background species.

Observed in high intensity proton beams (PRS).

Could be a show stopper for high intensity 
accelerators, e.g. SNS.

Transverse geometry and dynamics are important.

Damping mechanisms (Landau damping) are 
important. 
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Agrees well with experiment observations (Proton Storage Ring) 

Mode structure

Growth rate

Real oscillation frequency

Instability properties predicted by BEST simulations

Late time nonlinear growth observed. 

There are two-phases to the instability.

L
og

10
|δ

n b
/n

b|

btβω

BPM ΔV signal

CM42 (4.2 μC)
(Circulating Beam 
Current)



R. C. Davidson, et al, PRST-AB 2, 054401(1999).

Possible two-stream instabilities for Cornell ERL

No self-space-charge effect for beam.

Possible two-stream interactions:

Small mass ratio is a disadvantage.

Fast electron- slow electron in ERL

Electron-ion (background)
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Damping mechanisms for two-stream instabilities 

Landau damping by momentum spread.

Landau damping induced by transverse turn spread.

Nonlinear space charge field.

Chromaticity induced.

Theoretical growth rate is greatly reduced.

Instability threshold observed both numerically and experimentally. 
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Vlasov-Maxwell equations provide a very effective tool to understand 
collective processes in intense charged particle beams.

Nonlinear δf particle simulation method significantly reduces noise.

Major progress has been made in simulation studies of collective effects.
–

 
Electron-cloud-induced two-stream instability.

–

 
Temperature anisotropy instability.

Exciting future task areas include:
–

 
Other collective excitations and instabilities.

–

 
Beam-beam and beam-plasma collective interactions.

Conclusions
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