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A variational symplectic integrator for the guiding-center motion of charged particles in general
magnetic fields is developed for long-time simulation studies of magnetized plasmas. Instead of discretiz-
ing the differential equations of the guiding-center motion, the action of the guiding-center motion is
discretized and minimized to obtain the iteration rules for advancing the dynamics. The variational
symplectic integrator conserves exactly a discrete Lagrangian symplectic structure, and has better
numerical properties over long integration time, compared with standard integrators, such as the standard
and variable time-step fourth order Runge-Kutta methods.
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For applications of magnetized plasmas, the guiding-
center motion of charged particles is the physical process
that underlies the collective dynamics of the plasmas. For
most simulation studies, the elementary equations of simu-
lated particles are those of the guiding-center dynamics.
Because of the multiscale length nature of magnetized
plasmas, it is often necessary to carry out simulations in
a time scale much larger than that of the guiding-center
motion. For example, in simulation studies of plasma
transport physics in a tokamak geometry, the simulation
time is typically much larger than the transit time of the
guiding centers of ions and electrons along the toroidal
direction. It is desirable to use numerical integrators with
good global conservative properties over long integration
time in these simulation studies. Standard integrators, such
as the fourth order Runge-Kutta method, only guarantee
the error to be small in each time step. The errors at
different time-steps often accumulate coherently, and re-
sult in a large error over a large number of time steps. A
well-known numerical integrator with global conservation
property is the symplectic integrator for Hamiltonian sys-
tems with canonical structure [1–5]. The symplectic inte-
grator for canonical Hamiltonian system conserves the
canonical symplectic structure exactly, and guarantees
that the energy error is bounded by a small number for
all the time steps.

However, the guiding-center dynamics in general mag-
netic field does not possess a (global) canonical symplectic
structure, and the conventional symplectic integrator does
not apply. Recently, Marsden and West [6] developed the
method of variational symplectic integrator for dynamic
systems with a well-defined Lagrangian, and the varia-
tional symplectic integrator conserves exactly a noncanon-
ical symplectic structure. In this Letter, we develop the
variational symplectic integrator for the guiding-center
dynamics from the guiding-center Lagrangian and demon-

strate its superior numerical properties compared with the
standard fourth order Runge-Kutta methods.

The Lagrangian for the guiding-center motion first de-
rived by Littlejohn [7] is

 L�x; _x;u; _u�� �A�x��ub�x�� � _x�
h
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i
;

(1)

where we have normalized A by cm=e and� bym=e. Here
x and u are the position and parallel velocity of the guiding
center, and � is the conserved magnetic moment. The
electromagnetic field is assumed to be time-independent
in Eq. (1). The Lagrangian for general time-dependent
electromagnetic field can be found in Refs. [8,9]. In the
present study, we will focus on the case of time-
independent field and use it to demonstrate the basic
technique. The Euler-Lagrangian equations of L with re-
spect to x and u give the guiding-center motion equations
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The details of the calculation of the Euler-Lagrangian
equations are outlined in Ref. [7]. While the gradient drift
can be easily identified in Eq. (2), the whereabouts of the
curvature drift is not obvious. We note that the curvature
drift is actually hidden inside the term By=By

jj
. From the

viewpoint of variational principle, the dynamics of the
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guiding center according to Eqs. (2) and (3) minimizes the
action

 A �
Z t1

0
L�x; _x; u; _u�dt: (4)

To simulate particle’s guiding-center motion, the con-
ventional method is to numerically solve the guiding-
center motion Eqs. (2) and (3) by adopting one of the
standard methods for numerical integration of differential
equations. Here, we take a different approach. Instead of
discretizing the differential equation Eqs. (2) and (3), the
idea of variational symplectic integrator is to start from the
variational principle. We first discretize the action A, and
then minimize the discretized action to obtain the iteration
rules for advancing the guiding center’s position and par-
allel velocity. Following Ref. [6], we discretize the action
on a uniform time grid t � �0; h; 2h; . . . ; �N � 1�h; Nh �
t1� as

 A � Ad �
XN�1

k�0

hLd�k; k� 1�; (5)

where �t � h is the length of the time-step and

 Ld�k; k� 1� 
 Ld�xk; uk;xk�1; uk�1�

is the discretized Lagrangian on the time interval t �
�kh; �k� 1�h�. Ld�k; k� 1� is constructed from the values

of (x, u) at t � kh and t � �k� 1�h, denoted by (xk, uk)
and (xk�1, uk�1). In the present study, we select the follow-
ing expression for Ld as a first order approximation to the L
given by Eq. (1)

 Ld�k; k� 1� 

�Ay�k� 1� �Ay�k���

2

�xk�1 � xk�
h

�
ukuk�1

2
��B�k� ���k�; (6)

where Ay�k� 
 Ay�xk; uk�, B�k� 
 B�xk�, and ��k� 

��xk�. To obtain the iteration rules for the dynamics, we
assume ��x0; �u0� � ��xN; �uN� � �0; 0�, and minimize
the action Ad with respect to arbitrary variation (�xk,
�uk) (0< k<N). Since Ad depends on (xk, uk) only
through Ld�k� 1; k� and Ld�k; k� 1�, the necessary con-
ditions for minimum with respect to (xk, uk) are

 

@
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�Ld�k� 1; k� � Ld�k; k� 1�� � 0: (8)

Here xjk is the jth (j � 1, 2, 3) component of xk.
Equations (7) and (8) can be viewed as the discretized
Euler-Lagrangian equations. Substituting the expression
of Ld from Eq. (6), Eqs. (7) and (8) become
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where subscript ‘‘; j’’ denotes d=dxj, and summation over
repeated index is assumed. Equations (9) and (10) form an
implicit system for (xk�1, uk�1) from (xk, uk) and (xk�1,
uk�1), and give the iteration rules for the dynamics on the
discrete time grid.

The most important feature of this algorithm is the
conservation of a noncanonical symplectic structure �d
associated with Ld. To see how �d is defined, we note that
Ld�k; k� 1� can be viewed as a function of (xk, uk) and
(xk�1, uk�1). This allows us to define the following two
one-forms
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which form a partition of the exterior derivative of
Ld�k; k� 1�, i.e.,

 dLd�k; k� 1� � ���k; k� 1� � ���k; k� 1�: (11)

We define the discrete Lagrangian symplectic structure �d
as

 �d�k; k� 1� 
 d�� � d��: (12)

In Eq. (12) we have used the fact that d�� � d��, which is
an obvious consequence of Eq. (11). Note that �d�k; k�
1� is a closed two-form on the space of (xk, uk, xk�1, uk�1).
Now, taking the exterior derivative of Ad defined in Eq. (5),
and utilizing Eqs. (7) and (8), we have

 dAd � ���N � 1; N� � ���0; 1�:

Taking one more exterior derivative leads to

 �d�0; 1� � �d�N � 1; N�: (13)

What Eq. (13) implies is that the Lagrangian symplectic
structure �d is conserved, when the system is advanced
from t � 0 to t � t1 � Nh according to the iteration rules
given by Eqs. (9) and (10). We note that there are different
ways to select the first order discretization in Eq. (6). For
example, we can replace the last two terms in Eq. (6) by
���B�k� ��B�k� 1� ���k� ���k� 1��=2, which re-
sults in the same iteration rules as Eqs. (9) and (10).

PRL 100, 035006 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
25 JANUARY 2008

035006-2



The implicit system (9) and (10) can be solved by using
the semi-explicit-Newton’s method. We first linearize the
implicit terms

 �Ayj�k� 1� � Ayj�k� 1�� � Ayj;i �k��x
i
k�1 � x

i
k�1�

� bj�k��uk�1 � uk�1�;

and turn the system into an explicit one
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i
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��B;j�k���;j�k�;

(14)

 

1

2h
bi�k��xik�1 � x

i
k�1� �

uk�1 � uk�1

2
: (15)

It is of course trivial to solve the explicit system (14) and
(15), the solution of which will be used as an initial guess
for solving the implicit system (9) and (10) using the
Newton’s method.

We note that for Hamiltonian systems with canonical
symplectic structure, symplectic algorithms can be con-
structed to be explicit. Since the guiding-center dynamics
does not have a canonical symplectic structure, our ap-
proach is to start from the variational principle to construct
a symplectic integrator, which turns out to be implicit. It is
not clear to us whether it can be constructed to be explicit,
which is clearly a future research topic. Of course, there is
additional overhead associated with the implicit nature of
the variational symplectic algorithm. However, since there
is a good explicit approximation to the implicit system, the
root searching algorithm starting from the solution of the
explicit system quickly converges in several iterations for
practical applications. Because the discretized Lagrangian
in Eq. (6) is a first order approximation to the continuous L
over one grid, the accuracy of the current algorithm is of
the first order. The order of accuracy can be improved if we
discretize L over multiple grids. For example, a second
order scheme can be constructed if L is discretized over
two grids. Of course, this will bring extra computation
overhead. The design and tradeoff studies for high order
schemes are apparently another interesting topic for future

FIG. 1. Guiding-center orbits numerically obtained by using the variational symplectic method (a), standard fourth order Runge-
Kutta method (b), and variable time-step fourth order Runge-Kutta method (c). The exact orbit is the ellipse of x2=4� y2 � 1. The
integration time is 5	 105 periods of the closed orbit. Deviation �B=B0 as a function of time from the exact orbit for the three
methods (d).
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research. Compared with other methods, symplectic algo-
rithms can achieve better results with low order schemes
because the local errors in symplectic algorithms do not
accumulate coherently over the entire integration domain.
The energy error is globally bounded. The algorithm pre-
sented is expressed in terms of potentials A and �. This is
natural because the governing equation system of the
collective dynamics of guiding centers is the gyrokinetic
equation system, and the fields, especially the perturbed
fields, in contemporary gyrokinetic equations are ex-
pressed in terms of potentials A and �. Therefore it is
actually more convenient to advance particles using the
potentials. For equilibrium fields, the vector potential can
be easily constructed for most magnetic systems, such as
those in tokamaks and stellerators. Furthermore, the equi-
librium vector potential only needs to be set up once
initially with the grid before the dynamic simulation be-
gins. The computation overhead induced is minimum.

Let us give a numerical example of the variational
symplectic integrator developed. Consider a 2D, weakly
inhomogeneous magnetic field

 B � B�x; y�ẑ; B�x; y� � 1� 0:05
�
x2

4
� y2

�
:

In this ideal geometry designed for the purpose of testing,
the guiding-center drift motion forms a closed orbit in the
x� y plane,

 

x2

4
� y2 � const:

The dynamics of u and z is trivial and decoupled from the
transverse motion. Shown in Fig. 1(a) is a guiding-center
orbit numerically obtained by using the variational sym-
plectic method, and Figs. 1(b) and 1(c) are the same orbit
obtained by the standard and variable time-step fourth
order Runge-Kutta methods. The total integration time is
5	 105T, where T is the period of the guiding-center
periodic motion. The initial position for the guiding center
is at �x0; y0� � �0; 1�, and the exact orbit is the ellipse of
x2=4� y2 � 1. The time step for the variational symplec-
tic method and the standard fourth order Runge-Kutta
method is �t � 0:02T. The time-step for the variational
time-step fourth order Runge-Kutta method is varied to
keep the stepping error " < "0 � 1:1	 10�5, where "0 is
the initial stepping error corresponding to the initial time
step �t � 0:02T. Here, the stepping error is calculated by
the usual step doubling method. The averaged time-step for
the variable time-step fourth order Runge-Kutta method
over the entire integration time is 0:0195T. For each step of
the variational symplectic integrator, two Newton itera-
tions are employed for root searching, which requires three
evaluations of force. The numbers of force evaluations per
step for the standard and variable time-step fourth order
Runge-Kutta methods are 4 and 5.5. Therefore, the ratio
between the numbers of force evaluations for the three

methods is 1:1:3:1:88, with the variational symplectic in-
tegrator having the smallest number of force evaluations
and the variable time-step fourth order Runge-Kutta
method the largest. Plotted in Fig. 1(d) is the normalized
deviation from the closed orbit �B=B0 as a function of
time for the three integrators. Here �B 
 B�x; y� � B0 and
B0 
 B�x0; y0�. Clearly demonstrated in the figures is the
fact that for the variational symplectic integrator, the de-
viation from the exact orbit is bounded for all time,
whereas for the standard and variable time-step fourth
order Runge-Kutta methods, the orbits drift away slowly
from the exact orbit in the longer time scale, even though
for the integration time comparable to T, the Runge-Kutta
methods give an accurate result. The superiority of the
variational symplectic integrator over longer integration
time can be attributed to the fact that it conserves exactly
the discrete symplectic structure �d.

In conclusion, starting from the variational principle for
the guiding-center dynamics, we have constructed a varia-
tional symplectic integrator for a long-time simulation
study of magnetized plasmas. The variational symplectic
integrator conserves exactly a discrete Lagrangian sym-
plectic structure, and has better numerical properties over
long integration time, compared with standard integrators,
such as the fourth order Runge-Kutta methods. We would
like to point out that if the integration time is not very long,
the advantage of the variational symplectic integrator de-
veloped is not prominent. Therefore, what we wish to
accomplish is to provide another optional integrator for
guiding-center dynamics, with emphasis on the global
conservative properties over long integration time, which
could benefit long-time simulation studies for magnetized
plasmas.
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