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The pullback transformation of the distribution function is a key component of gyrokinetic theory.

In this paper, a systematic treatment of this subject is presented, and results from applications of the
uniform framework developed are reviewed. The focus is on providing a clear exposition of the
basic formalism which arises from the existence of three distinct coordinate systems in gyrokinetic
theory. The familiar gyrocenter coordinate system, where the gyromotion is decoupled from the rest
of particle’s dynamics, is noncanonical and nonfibered. For the phase &mateagent bundle

T*M) associated with a configuration spabk, a nonfibered coordinate systetX, V) is a
coordinate system wheb€is not necessarily the coordinates for the configuration spacandV

is not necessarily the coordinates for the cotangent fijem at eachx. On the other hand,
Maxwell’s equations, which are needed to complete a kinetic system, are initially only defined in the
fibered laboratory phase space coordinate system. The pullback transformations provide a rigorous
connection between the distribution functions in gyrocenter coordinates and Maxwell’s equations in
laboratory phase space coordinates. This involves the generalization of the usual moment integrals
originally defined on the cotangent fiber of the phase space to the moment integrals on a general
six-dimensional symplectic manifold. The resultant systematic treatment of the moment integrals
enabled by the pullback transformation is shown to be an important step in the proper formulation
of gyrokinetic theory. Without this vital element, a number of prominent physics features, such as
the presence of the compressional Ativevave and a proper description of the gyrokinetic
equilibrium, cannot be readily recovered. 204 American Institute of Physics.
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I. INTRODUCTION utilizing noncanonical Hamiltonian and phase space Lie per-
turbation methoti® has been carefully established over a
Most of the interesting plasmas in laboratory and spac&umber of years. It not only sets up a rigorous and system-
environments involve the presence of magnetic field. Theyic foundation for the gyrokinetic framework, but also clari-
particle’s motion in a magnetized equilibrium consists of afies numerous confusing concepts and introduces much more
fast gyromotion and a slow guiding center motion. It is thiSphysics content into the theory. Specifically, gyrokinetic
fast gyromotion which restricts the allowable time step i”theory has been extended to deal with arbitrary frequency,

particle simulations of thg associated dynamics in the 'aboarbitrary wavelength, electromagnetic perturbations in gen-
ratory phase space coordinate frame. Over the past 20 yeagsq) geometrie&-28

a primary goal of the gyrokinetic theory developed formal- One of the key components of modern gyrokinetic

ism has been to remove the fast gyromotion from the klr"Et'(fheory is the pullback transformation of the distribution func-

system for _I%W frequen_cy gnd long paraliel WaVEIe.ngt.hUon. Premature versions of the pullback transformation have
phenomend:1°Progress in this area has enabled gyrokinetic : . .

. : : . : appeared in various formats in the course of the development
particle simulations, which use a much larger time step than

the time scale of gyromotioh’-22to be successfully ap- of the gyrokinetic theory over the last 40 years. It is now

plied in studies of the transport problems of fusion pIasmas(.:Iear that the pullback transformation is responsible for

In particular, gyrokinetic theory offers a simplified version of many Important phyglcs properties n gyroquetlc thgory.
the Vlasov—Maxwell system by utilizing the fact that in Prominent examples include the polarization drift density in

strongly magnetized plasmas the particle’s gyroradius idhe gyroki'neti'c Pois\son equati&qhe polarization current in
much smaller than the scale length of the magnetic fieldth® gyrokinetic Ampae’zsé law which accounts for the com-
es=|p/Lg|<1, whereLg=|B/VB|. More fundamentally, pressional Alfve wave;> and the pressure balance equation
gyrokinetic theory requires the construction of a gyrocentefor gyrokinetic equilibriunt’ In this paper, a systematic
coordinate system in which the particle’s gyromotion is de-treatment of this subject will be presented together with a
coupled from the rest of the particle dynamics. The Vlasov-brief summary of key results from applications of the uni-
Maxwell equation system can then be derived in this specigiorm framework developed.

coordinate systeﬁ'ﬁ‘zg Guiding center coordinates are em- In Sec. Il, the general theory of coordinate transforma-
ployed in the magnetostatic case, while gyrocenter coorditions and their pullback transformations in phase space are
nates are employed when there are electromagnetic perturbdeveloped. The concept of nonfibered phase space coordi-
tions in the system. Modern gyrokinetic thet?y*>%-2®  nates is introduced and the phase space moment integral is
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correspondence between two different coordinate systems for
Coordinate System 1 the same point in phase space is the coordinate transforma-
tion. In the present study, it is assumed that a coordinate
transformation can be represented by a single map almost
everywhere. The subset of coordinates which cannot be cov-
ered by the single map has zero measure and does not con-
tribute to the moment integrals.

Kinetic theory deals with a particle distribution function
f, which is a function defined on the phase sp&gef:P
—R. In addition, kinetic theory in its common form implic-
Coordinate System 2 itly makes use of the fact that the phase space is the cotan-
gent space(cotangent bundbe of a configuration space

. T .
FIG. 1. In Sec. lll, we investigate the physics of guiding center puIIback(mameIq) M, P=T"M. We call a coordinate syste, v)

transformation. The gyrocenter pullback transformation is studied in Sec. IV fiber coordinate system ¥fis the coordinate foM, andv

is the coordinate for the cotangent fibEfM at x. Note that

the symbol ‘v” is used to represent the cotangent fidérmv
generalized into a parameterized integral of a momenatx. It can be viewed as a short form pfm, wherep is the
6-form in the 6D phase space. It is emphasized that the thenomentum andn is the relativistic mass, ip is used to
oretical formulation in Sec. Il is much more general than therepresent the cotangent coordinates. A fiber coordinate sys-
gyrokinetic theory. For example, it applies to other physicstem for the cotangent bundle of the laboratory configuration
problems involving phase space coordinate transformatiorspace will be referred to as the laboratory phase space coor-
e.g., Vlasov—Maxwell system for periodically focused dinate system. The familiar moment integrals are actually
charge particle beams. In Sec. lll, the pullback associatefiber integrals of moment functiong:P— R performed on
with the guiding center transformation is described with em-the cotangent fibef; M at eachx. In the laboratory phase
phasis placed on the underlying physics. The pullback ass®pace coordinate systef®, v), the moment integral of a
ciated with the nonsymplectic gyrocenter transformationmoment functiong(x,v) has the form
needed to deal with time dependent electromagnetic field is
presented in Sec. IV. Finally, in Sec. V, the general implica- _ 3
tions of the pullback transformation for gyrokinetic theory 400 = f *MQ(X'v)f(X'v)d v @
are summarized.

X

The moment integrals yield results which are functions on

Il. COORDINATE TRANSEORMATIONS the laboratory configuration spadd. These integrals are

AND THEIR PULLBACK TRANSEORMATIONS themselves independent of the coordinate systems used for
IN PHASE SPACE the cotangent fibef} M at eachx. In other wordsg(x) is

) ) invariant under a fiber coordinate transformation, i.e., a co-
A. Fibered phase space coordinate system ordinate transformation that transforms only the fiber coordi-

Physics is geometric and independent of coordinateg)atev. Letting ¢,:v—V be a fiber coordinate transforma-
even though it can be more efficiently described with thetion which in general depends o the invariance ofj(x)
help of coordinates. All possible choices of coordinate syscan be expressed as
tems should be equivalent in terms of analyzing the physics
of interest. If two coordinate systems are connected through ) — q(x,v)f(x,v)d3v=j Q(x,V)F(x,V)d3V,

a transformation, then the physics content must be invariant M M

with respect to the transformation. However, the mathemati- 2
cal involvement of different coordinate systems is indeed
different when describing the same phy)s/ics. For a giver{'Nere d(x,)f(xp)d and Q(x,V)F(x,V)d*V, are the
physics problem, the natural first step is to find the mos{eprese.ntatlons Ofg the sarsne 3-forms.()q v) and (x, V),
efficient coordinate system. This can usually be constructeEESpeCt'V6|¥' Here® andd"V can be V'EW.Ed as the volgme
by imposing the desired mathematical structures. More ofte orms of T, M at eachx. For examplg, In a magnetlzed
than not, it is constructed by perturbations around an obviou lasma, the We”"‘F‘OW” % ”L.L'e) velo_(:lty coordinates, as
choice of coordinate system through a near identity coordiWeII as the Cartesian veI00|_ty coordinates, can be used to
nate transformation. In this sense, perturbation methods iﬁalculate the same moment integrals,

physics are really about the quest for useful coordinates. In

the present analysis, attention will be focused on the coordiq(x)zf q(X,v1,v2,03)f(X,v1,v2,v3)dv0dv,0dv s

nate transformations in the 6D phase space for a single non-

relativistic classical particle. A coordinate transformation for B,

the phase spade of dimension 6 can be locally represented = HQ(X*UII @) F (X, m, $)doOdulide. — (3)

by a map between two subsets of tR8 space,T:z—>Z

=T(2). As illustrated in Fig. 1, for the same poiptin phase In this example, the volume formv ,dv,0dv 3 is canoni-
space, there could be more than one coordinate system. Tleal whereas the volume fornB(/m)dv,0dx0dé is nonca-
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nonical. The most noticeable difference between themis that A =¢ *\=¢ *[q(x,v)f(x,v)d%v]
the former is a constant and the latter depexds

=[e ™ q(xv)l[¢ ™ f(x0) ][ *d%], (8)

B. Nonfibered phase space coordinate system where
In gyrokinetic theory, however, useful coordinate sys- o *q(x,v)=Q(X,V)=q(x(X,V),v(X,V)), 9
tems are nonfibered. A nonfibered coordinate syst¥nv) o E(x.0) = F(X.V) = F(X(X.V).0(X, V). (10

is a coordinate system whekeis not necessarily the coor-
dinates for the configuration spabk, andV is not necessar- Here it has been assumed that the transformagiga dif-

ily the coordinates for the cotangent fibEf M at eachx. A feomorphism(one-one onto and smogthand ¢~ ** [or
nonfibered coordinate transformation, by definition, transfer§e~1)*] is the pullback associated with~*, which maps

a fibered coordinate system into a nonfibered one. In thany function on(x, v) into a function on(X, V). ¢ * can
context of gyrokinetic theory(X, V) can be either guiding also be called the pushforward associated witif ¢ is a
center coordinates or the gyrocenter coordinates, both dafiffeomorphism. Therefore, in a general nonfibered coordi-
which are nonfibered. The construction of the guiding centenate systentX, V), q(x) can be expressed as

coordinates and the gyrocenter coordinates will be described

in detail in Secs. lll and IV. The discussion in this section q(x):f )\:J e N

applies to any general nonfibered coordinate systems and M M

nonfibered transformations.

No matter which nonfibered coordinate system is used,
the moment integrals are still defined on the cotangent fiber
TiM at eachx, andq(x) should be invariant under such a
general nonfibered coordinate transformation. For the new
coordinate systertX, V) to be useful, it is necessary to know
the construction ofy(x) in it. To be specific, the scenario X[~ *d3]. (11
studied in this paper is that the distribution functiid,v) is
known in the transformed nonfibered coordinate syst&m
V) asF(X,V), whereaj(x,v) as a physical quantity, such
as the position and the velocity, is only meaningfully defined  d®v=dv;0dv,0dvg, (12
in the laboratory phase space coordinate system). Given
g(x,v) and F(X,V), there are two methods to calculate
q(x). The first method is to pull back the distribution func- ¢~ *[d3v]=dv;(X,V)Odv,(X,V)Odvs(X,V). (13

tion F(X,V) into f(x,v), and the second method depends onryere are practical difficulties associated with using @)

the generalization of the concept of moment integrals. to calculateq(x). First, the pullback of the volume form
The first method, where the distribution functiBiX, V) ¢~ *d% has 20 terms in general, because the dimension of

. 1 . .
is pulled back" into f(x,v), can be written as a general 3-form in the 6D phase space is 20. Second, the

U={(X,V)|x(X,V)=cons}

:f [~ ™ a(x,v)]F(X,V)
U={(X,V) [x(X,V)=cons}

If the coordinatew =(v4,v,,v3) for T M are canoni-
cal,

then

. 5 integration domain expressed in tt¢ V) coordinate system
a(x)= fT*MQ(X,v)SD [F(X,V)]d®v, (4) is complicated.
X To get around these difficulties, the concept of a moment
where integral can be generalized by a different approach. Specifi-
o*[F(X,V)]=F(X(x,0),V(x,0))=f(X,0). (5) cally, a moment integral is generalized into a parameterized

integral of a moment 6-form, in the 6D phase space
In the second method, we consider the generalization of

the usual moment integrals originally defined on the cotan- i(r)=J A, (14)
gent fiberT; M at eachx to the moment integrals on a gen-
eral 6D symplectic manifol&. This can be accomplished by \,=i(r,2f(2)d®, (15)

two different approaches. The first approach is to Vigiiv
as an orientable 3-subset Bfandq(x) as an integral of a
moment 3-form\ over such an 3-subset,

wherez=(x,v) is phase space coordinateis a set of inde-
pendent parameterigy,2) is a moment function of the phase
space and the parametersandd®z is the Liouville volume
q(x)= j e ©6) from given by the symplectic structuee in the phase space
XM -1
6,—
In the laboratory phase space coordindtew), the moment d"z= 3! wHolo. (16)

3-form A is defined as In a canonical coordinate system

A=q(x,v)f(x,v)d%, (7) 3
whered?®v is the volume form forT}M at a fixedx. In a wzzl dx'Odv; , 17)
general nonfibered coordinate systeM,\{) = ¢(X,V), A\ is -
pulled back from its form inx, v), dbz=dx'0dx?0d x*0dv ; Odv ,0dv 5. (18)
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Under a nonfibered coordinate transformatign(r) is ob-  the pullbacks involved are often associated with coordinate

tained through the pullback of theparameterized 6-form perturbation transformations, and thus can be further simpli-

e, fied by the perturbation techniques adopted. For example, the
term 5(x(X,V)—r) can be Taylor expanded in terms of the

i(r):j ‘P_l*)\r:J o *[i(r,2)f(2d%Z] small perturbation parameter such that the integration in Eq.

(26) can be carried out order by order. The connection be-

o tween the single particle dynamics and the moment integral
ZJ o~ *[i(r,2f(2)]d°, (19 through the symplectic structure as shown in Eg§), (22),
and(23) is of significant importance. First of all, the volume
whered®Z is the Liouville volume form of(X, V) form needed to perform phase space integrals is given by the
d57= o~ 1*df2 (20) same symplectic form governing the single particle dynam-
ics. No metric is needed for the gyrokinetic Vlasov—Maxwell
If (x,0)=(X1,X2,X3,01,02,03) is @ canonical coordinate system, and it is purely symplectic. Second, the Liouville
system,d°Z can be straightforwardly expressed as volume formd®z= ¢~ *d®z of (X, V) will assume the same
d67= o~ 1* 67 functional form agd®z of (x, v), and the calculation of phase

space integral in Eq26) is simplified, if ¢~ 1* preserves the
=dx}(X,V)Odx*(X,V)Odx3(X,V)Odv1(X,V)Odv,  symplectic structure ofx, v)

X (X,V)Odvg(X,V). (21) Q) =¢ Y 0(2=[0(D],z- (27)

But in almost all the cases of practical interest, the Liouvillelf no obvious phase space structure exists, @&g.will be
volume formd®Z= ¢~ *d®z of (X, V) is more conveniently preferred. Such examples will be presented in Secs. Il and
calculated through the pullback of the symplectic structure 1V in the context of the gyrokinetic theory.

-1
d®z= ?QDQDQ, (22

Q=¢ o. (23

Ill. PULLBACK ASSOCIATED WITH THE GUIDING
CENTER COORDINATE TRANSFORMATION

This section deals with the pullback associated with the
One major difference between a canonical volume form an@uiding center transformation, which is a necessary theoret-
a noncanonical one is that the canonical volume form is 3cal construction for analyzing the gyrokinetic equilibridf.
constant where the noncanonical volume form is generally &uch an analysis is required for a proper understanding of
function of the phase space through its dependence on fielghagnetized plasmas in equilibrium using the guiding center
variables. For the case of the gyrocenter coordinate syste@bordinates. The gyrokinetic equilibrium is of fundamental
which will be discussed in Sec. 1V, the volume form nontrivi- importance for the widely adopted perturbative gyrokinetic
ally depends on the perturbed electromagnetic fields. Thearticle simulation §f method,®~?>where the equilibrium
usual moment integrals are special cases of the generalizefktribution function and the electromagnetic field are as-

moment integrals when sumed to be known. Gyrokinetic equilibria consistent with
i(r,2)=38(x—1)q(2). (24) the well-studied fI_uid ones are o_bviou_sly necessary for the
perturbative gyrokinetic particle simulations to be reliable. In
That is particular, recent numerical studies of equilibria with zonal
flows? raise again the question of how to describe the equi-
q(r)= f q(r,v)f(r,v)dv librium flow from the gyrokinetic point of view. The essence
"M

r of the problem studied here is how to relate the measurable
quantities in the laboratory frame to the information in the
zf S(x—r)q(x,v)f(x,v)d®z (25 guiding center coordinates. Given a distribution function
F(X,V,,n) in the guiding-center coordinatesZ
From Eq.(19), the construction ofi(r) using the distribution = (X,V,,u,&), how are the fluid density, flow, and current

function in the nonfibered coordinate syst&itX,V) is calculated? Do the macroscopic field variables calculated
from the gyrokinetic formalism satisfy the fluid equations
q(r):f o [ 8(x—r)q(x,v)f(x,0)d%Z] obtained by taking the moments of the Vlasov equation in
the laboratory phase space coordinates? The pullback formu-
. . las derived in Sec. Il give answers to these questions, when
=f ¢ *Lo(x=1)]e” *[a(xv)] applied to the guiding center transformation.
First, the guiding center transformati@ z—Z, which
X o ™[ f(x,v)]d°Z transforms the laboratory phase space coordinatg,v)
into the guiding center coordinateZ=(X,V,,u,§) is
=f S(X(X,V)—nNQ(X,V)F(X,V)d®Z. (26)  needed. It turns out that almost all the important terms in the

equilibrium equations can be generated by applying the pull-
Equations(4), (11), and(26) are equivalent and can be back formulas to the simple leading order guiding center
used interchangeably to simplify the calculation. In practice transformation
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shown. For the number density in laboratory phase space
B coordinates, we usg(z)=1 andG *1=1,

‘ n(r)=f S(X+p—r)F(2)d®Z

= f S(X=1)F(Z)d°Z+0(€?)

=2wf F(2)Bf/mdVidu| +0(é€?), (31)

Xi—=r

where “|x.,,” means replacingk by r.
For the fluid velocity in laboratory phase space coordi-

nates u(r), we have q(=v=% G Yv=X+p(X)
FIG. 2. The physics of the pullback formula. + 0(62) and

u(r)= f (X+ p)S(X+p—1)F(Z)d®Z+0O(€?)
X=x—po+O(e),

Vi=v;+0(e), =f [V b+ Veyxg+ Vgl8(X—1)F(2)d®Z
_ (28
= uotO(e),
£=0+0(e), +f pS(X+p—r)F(Z)d5Z+O(€?). (32

where §,v,v, ,6) is the usual laboratory phase space Co-The first term can be reduced to

ordinatesp, and g, defined in particle coordinates, are the

usual gyroradius and magnetic momehis chosen such that

U, = —elle|(esinf+e cosh). e and e are two perpen-

dicular directions in the configuration space, aed €, ,b) is

a right-handed orthogonal frame. =
For the guiding center transformati@z—Z, Eq. (26)

f[VHb+VEXB+Vd]5(X—r)F(Z)dGZ

UbCEbe WVB W,b-Vb
n H+En X +e—BX LF‘F 10-

Xi—=r
becomes LO(ed),
Q(r)=f q(r,v)f(r,v)d% where
2 .
=j q(2)f(2) 8(x—r)d°z UHETJVH FImF(Z)dV,du, (33
=fG’l*[q(z)é(x—r)]F(Z)d‘iz WFZWJ BuF(Z)Bf/mdVidy, (34
=JQ<Z)6[><+p—r]F<z>dez, (29) WHEZWJ mV{F(Z)B]'/mdVdp. (35)

where it is assumed that the guiding center transformagion 1€ sécond term is the diamagnetic flow, which can be sim-
is a diffeomorphismone—one onto and smogtaimost ev-  Plified in terms ofW, ,
erywhere, and

p5(X+p—r)F(Z2)dZ
d5Z=B*/md®XdV,dud¢, f”( p=NF(2)

BY—b.B*, B*=B+ o lyxp, =f pp-V 8(X—1)F(2)d°Z+0(€%)
e

Q2)=G ™q(2 0 B 2

-~ d(2), =— | V.[ppBrImF(2)]8(X—1)dV,dudé+O(€?)
p=G " py. W

c
The physics encapsulated in the pullback formula (26) is =— EVX b?) +0(€). (36)
X1

that an observablg(r) at a certain locatiom in the labora-
tory frame is the average of its microscopic counterpart exin Eq. (36), the following equations are used:
pressed in the guiding center coordina@&Z) over nearby
guiding centers withX(Z) + p(Z)=r. This is illustrated in . _ 2uB n

Fig. 2, where three examples of such guiding centers are p={pH} m &+0(e), 37
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_Zch
—Tfijb+o(€). (38)

f ppdé|
ij
Here €, is the Kronecker symbol, and the subsctiptep-
resents the dimension parallel Bo
Overall,

cb cn
n(ryu(r)=|nU,b+ e_BX(WLVB+W”b'Vb)+ EExb

+0(€?). (39

Xe—=>r

v Wib
eV B

It can be shown that tha(r) and n(r)u(r) derived above

Pullback transformations in gyrokinetic theory 1057

The first term on the right-hand side of the above equation is
smaller than the left-hand side by a factor@t, wherep

and L are the characteristic gyroradius and scale length of
the equilibrium flowu. In tokamak experiments, this term is
often neglected whek, is evaluated from the spectroscopic
measurements of flows and pressure gradieRor a neutral
plasma

C
=2 (enu)s=g|bxVX p,
S S

+ (VXb),|. (46

28‘, pn—Esl P,

satisfy the usual fluid equations derived from the VlasovThis is the transverse equilibrium force balance equation. In
equation in the laboratory phase space coordinate system Iparticular, when the distribution functiof is isotropic,
taking the velocity moments.As an example, the equilib- Sp=2p, =2gp, the familiar fluid result, j, =c/Bb
rium force balance equation can be recovered here. First, it i V=p, is recovered.

shown that

WL(I')=2’7TJ’ BuF(Z)B/mdVidu

Xi=>r
1 2 3
= | zmuifd®v+0(e)=p.(r)+OCe), (40)
W”(r):27rJ mVZF(Z)B}/mdVidu
Xi=r

mnU + zwf m(V,—U,)?F(2)Bf/mdVdu

X—r
=mnuf(r)+py(r)+O(e). (41)
From Eq.(39),
cb cn
nl,u= e_BX(WLVB‘i‘WHbe)‘i‘EEXb
c W
+—|Vx fb) ] +0(€)
q L) Xy
~c Vp, Xb bxXVB v b
“el B PTET V7B,
(VXb) (VXb)
Exb
+nTc+O(ez). (42
Using
(u-Vu)xb=—u?(Vxh), +O(€?), (43
bx VB by  (Vxb),
BZ _< E)l__ B ’ (44)

then leads to the result,
c
nu, =— as[mnu-Vux b+V, p, Xb

—(py=p.)(VXb), —enExXb]+O(e?). (45)

In the above derivation, the pullback formula has been
used in the form of Eq(26). The pullback formula in the
form of Eq. (4) can be used to obtain the same results.

IV. PULLBACK ASSOCIATED
WITH THE NONSYMPLECTIC GYROCENTER
CENTER COORDINATE TRANSFORMATION

When time-dependent electromagnetic perturbations are
introduced into a magnetized plasma, the guiding center co-
ordinates used in Sec. lll to study the gyrokinetic equilib-
rium will cease to be the “good” coordinate system where
the gyromotion is decoupled from the rest of particle dynam-
ics. To preserve the desirable decoupling of the gyromotion,
a nonsymplectic gyrocenter transformation,

Gy:Z=(X,U,u,&)—~Z=(X,U, ), (47)

can be constructed using a Lie perturbation method such that
the transformed symplectic structure has the same functional
form as that in the unperturbed guiding center coordinates.
Because the perturbation on the symplectic structure of the
guiding center is “deperturbed away” by the perturbative
gyrocenter coordinate transformation, particle dynamics in
the gyrocenter coordinates are exactly the same as those in
the guiding center coordinates except for a perturbation in
the Hamiltonian. Since two consecutive coordinate transfor-
mations are involved, two pullback transformations are
needed to relate the distribution function in the gyrocenter
coordinates-¢, to the macroscopic physical quantities in the
laboratory coordinateg(r). In the guiding center coordinate
Z=(X,U,u,§),

q(r)=j [G ™ql(2)F(2)8(GX—r)d®Z. (48)
Using Eq.(26) again, we have

q<r>=f [Gy G ™ al(D)F(2)8(Gy *6X-nd°Z.
(49

Alternatively, we can use Eq4) to replaceF(Z) by its
pullback from the gyrocenter coordinate to obtain
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Laboratory

Coordinate y idi
System (z,0)

— ¢ >
Covariant FIG. 3. Coordinate transformation and
components the associated pullback and push-
are pulled back. forward.

m
Contravariant

(3]

components —_—
are pushed foward. Oz

\y

_ - aS 9IS IS — S —
q(r)=f[G *q1(2)[GY* Feyl(Z2) (G~ X~r)d°Z. {SHo=Q —+ —+ — {X,Hot+ —{U,Hg}
(50) g It X oy

In the above equations,d®Z is understood to be o~ S T
(B /m)d®XdUdudé. Gy* is the pullback transformation =e¢i(X+pl) Cwl(erp’t)’ (52

associated with the gyrocenter transformation, which trans- L o

forms the distribution function in the gyrocenter coordinatesin the coordinates X,U,u,&). Here, é,(X+p,t) and
into that in the guiding center coordinatés. ! is the inverse V-A;(X+p,t) are the gyrophase dependent parts¢qtX
of G thgt transform§ the laboratory .phase space coordinate p,t) andV-A,(X+ p,t), respectively,

system into the guiding center coordinates. It is assumed that

the guiding center transformatio® and the gyrocenter DX+ p,t) =y (X+pt) = (pr(X+p,1)), (53
transformation Gy are bijective and smooth. The relationship

between the three coordinate systems involved and the ob- V. A;(X+ pg,t)=V-Ai(X+p,t) —(V-A;(X+p,1)),
jects defined on them are illustrated in Fig. 3. Covariant ob- (549
jects such as functions and forms are pulled back by the . I
associated coordinate transformation, while contravariant obfand Ho is the unperturbed Hamiltonian
jects such as vectors are pushed forward.

2

muU
The pullback transformation from the gyrocenter coordi-  Hy= > + uB.
nates to the guiding center coordinates is easily obtained
from the expression foG given by Refs. 14, 23—25. Since In the coordinatesZU,ﬁ,?), the linear gyrokinetic
the focus of this paper is not the gyrocenter coordinate transe'quation is
formation, the expression for the pullback transformation is
displayed in terms of the perturbed field&,(¢,) without 5 1 of
derivation, —+(Ub+wvg) - Vf——b-VHy—
ot m ou
Gy*F=F+LgF=F b>< A+CVS) VF 1 H F
y = =F—- — — . C Jd Jd
° BZ1" e =—Bb-<VFo><VH1>——b-(VFo—_l—VHl—_O),
e m
e o[ CVS JF au 2]V
TmeX | M eYS G (55
Lefe, as} IF oty where
R By g Il €n),
mclc' b 9E " dE|du B F=Fy+f, (56)
(51 B o B
where the gauge functio8 satisfies H1=<e¢1(x+ p.t) - EV'Al(X+p’t)>' &7
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The importance of the pullback formula in E4S0) and(51)  to O(v{V?$/Q*) for the LgF, part of the pullback transfor-

is demonstrated in the following nontrivial examples. Wemation Gy have been retained. For the perturbed parallel
note that Eqs(50) and(51) are written in the guiding center flow,

coordinates, while Eq952) and (55) are in the gyrocenter

coordinates. In the following equatior’s,and ¢ will be used noul(r)z[f U[GY* (Fp+f )](2)5(X+p—r)d62]
to represent the perturbed field. The subscript “1” will be 1
dropped.
=f Uf(Z)5(X—r)dGZ+J U[8(X+p—T)
A. Gyrokinetic shear Alfve “n wave — 5(X—r)]f(Z)d62+f US(X+p—r)
For shear Alfva physics, we can only keep the parallel .
component of the vector potenti&dl=Ab. To the leading % iA X+ Q+ e~ X4
order, Eq.(52) for shear Alfvea modes reduce to i(X+p1) g|¢X+eD
S e|~ — 1— — 1—
Q—=—|dX+p,t)— ZUA(X+pt) ——UAH(X+p,t) S hd°z, (62
g Q c
Again, the algebra here is straightforward but involved. The
e = 1 = final result is
~5p0~ V¢(X,t)—EUVAH(X,t) . (59

e
Nouy(r,t)= [ JoUf(r,U, ,td3+f—UAr+
Using Eq. (51), we have the pullback transformation for ota(Tt) f oUT( pd mc< (T po))

shear Alfven modes,
oy, B —d o|u+—§no LV2A 63
U T —uu 2mcQ s (63
where the first integral on the right-hand side is the perturbed
el 1— JF parallel flow of the gyrocenter, and the second integral and
+tgle(Xtp ) - EUAII(X+pat)} o (59 the third term are the gyrocenter correction generated by the

pullback transformation.
The perturbed density, perturbed flow, and perturbed current  From Eq.(61), the quasineutrality condition is

can be derived from the general form of E§0),
>e

f[Gy*(FOJrf )](2)5(x+p—r)d62] i
1

Gy*F= F+ H(X+p,t)

3e vZ ng

3 ey Mo 4
Jofd®v + Evlmvl(ﬁ 4m QZ Vl(ﬁ

ny(r)= 64)

From Eq.(63), the parallel Ampee’s law is
:f f(Z)5(X—r)d62+J [8(X+p—r) F,
[V><V><A]H=—E f (UJOf+ U me (UA))
—5(X—r)]f(Z)dGZ+f S(X+p—r)
4o eznovt )
+TWVJ‘AH. (65)
In Egs. (64) and (65), the spatial variable is the laboratory
coordinater. Howeverr is a dummy variable. What matters
]dGZ (60)  is the functional forms. We can replaceby the spatial co-
~ ordinate of the gyrocenter coordina&sEquations64) and
From Eq.(60), the perturbed density in laboratory coordi- (65) will be referred to as the gyrokinetic quasineutrality
nates consists of three parts corresponding to the three intgpndition and the gyrokinetic parallel Amgs law, respec-
grals on the right-hand side of the equation. The first integrafjyely.
is the perturbed density in gyrocenter coordinates, the second  As a simple application of these results, we derive the
integral is the guiding center correction, and the third inteqoca| dispersion relation in an unsheared slab geometry with
gral is the gyrocenter correction. After some lengthy algebrag = B(x)e, andn,=ny(x). For local perturbations

(b, )~y kD), (66)
where ) is defined through

X

AEp ) 0L El G x prt
_c”( Pr)m gfﬁ( p.t)

1— dFg

3 e _ ng
nl(r,t)zf Jof(r,U,u,t)d v+ Eviﬁwﬁ(r,t)

3 ev C
+t7 ;)40Vj¢(r,t), (61) Au:m(Vi/fu)u- (67)

whered®v =27(B/m)dUdu, Jo=Jo(v, V, /iQ) is the ze- The solution of the gyrokinetic equation, E&5), for shear
roth order Bessel function of the first kind, and only terms upAlfveén waves in slab geometry is
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e kU € w—wy kU nom;c? €Ny €Nig [ vy | 2 ’
= — — e — 4+ =-— 2| _ - —
f TFO( L "”) Toku o ? %) B2 Y T, T | o ! wh
(68)
eNoi w, w?
. . . . . i 110i Wy
wherew, is the diamagnetic drift frequency defined by -7 T( 1- ;5)
[ A
cT dinn| !
w*iE(L eké , =" | “gx , (69) B ezngo w*e+ eiznizo Dy iz
e Te o T o |ox
gnd the temperatu're grad.lent has;' peen neglected. Substitut- e?n, & Te vk 2 o, w2
ing f into the quasineutrality condition, we have, = +—||1- —|.
Te le|Ti| o ® wh
E VL sz (76)
Note the following relationship between, ; and w, . has
been used:
_ el
Wy =™ eT (77)
e no (O™ /e
+ (‘75 )= E - This then leads to the familiar fluid resdft,
2 2 2
70 €iC
S ! L
Z({) is the plasma dispersion function ardegs w/kvy,. '
Straightforward algebra shows that the parallel Arefselaw  where
reduces to
2 Te
wz Cs= ﬁ (79)
Kin="z ¢ (71) | | |
Ua It is commonly believed that when the plasmaratio of
o in terms ofwa=kyv plasma tq magnetic pressmrmproaches zero, the magnetic
perturbations are not important. However, it is not a correct
w? conclusion that, whei goes to zero, there are no magnetic
h=_z¢ (72)  perturbations. Very obvious examples are the well-known
A

shear Alfven wave and the compressional Alfvevave in a
Inserting this polarization property into the quasineutral-homogeneous magnetized plasma. Even in a pemtagne-

ity condition, we obtain the desired dispersion relation,  tized plasma, the shear Affaewave and the compressional

Alfvén wave are both mathematically and physically well-

> e’ng 2 01l »? defined. The physical mechanism maintaining these two
i mQ2y ¢ _/{ waves is the balance between plasma kinetic energy and the

restoring force due to the bending or compression of the
equilibrium magnetic field. Theoretically, they are character-
ized by the dispersion relatlonasz—kuvA and w?=k%v3,
respectively. Their existence is independent of the plagma
This fact can also be verified from the dispersion rela-
tion, Eq.(70). Whenwa> w, ., there exists a solution in the
range ofw, . For this range ofw, the dispersion relation is

-3

>~| 5

e? no oy w?

® wi'

-2

(73

(1)2
1- — .
w

A

nom c? k2

(80)

It contains many interesting physics effects for various parazoq,ced to
The fluid results are generally recovered from kinetic (
theory by ignoring the kinetic resonances and assuming the

metric regimes. Some, which are relevant to tokamak plas-
mas, will be highlighted in the following discussion.
2/1R2\ 1,2 ;
so-called “hot electron, cold ion expansion,” that is, Undgrznormal condition, termnom;c/B) ky is smaller by
O(pgk?), compared with the other terms. To the leading

; I3) L 74 order,

= <

¢ v w’= wi . (81
The fact that there are no assumptions abgutand ¢;

&i= ok >1. (75 needed here to obtain this shear Alivvave is consistent

with the basic physical picture of the shear Alfiveave. The
Using the Taylor expansion and the asymptotic form forstatement that when the plasm8ds small, magnetic pertur-
Z(?), gives bations are not important is always relevant only for a spe-
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cial class of electrostatic modes. In particular, for the elec-
trostatic drift waves, magnetic perturbations are decoupled
from these electrostatic perturbations wheis small. This

is evident from the fact that

P%e 0 as f—0. 82)
WA

It is also evident from the polarization property,
=(wl/wp) ¢. For the electrostatic drift wavey~ w, ¢,

Pullback transformations in gyrokinetic theory 1061

S 9S9+sb452)

Q—~0————+0(e))
JE €
( vy A vy 4 P2
e ¢ c Q at ¢ c ¢
e &
v o 2] [[5- 5R| o
(86)

From the general form of the gyrocenter pullback transfor-

N="0t4=0  as f—0, (83

For the shear Alfve branch,o~ wax,
¥~ ¢ independent off. (84)

The above facts also lead to 8giiica” Where there is

strong coupling between the electrostatic drift branch and the

electromagnetic shear Alfwebranch. The criterion iso, .
~w,. In tokamak geometry, it 78

[Gy*(

mation we have

Fotf)ls
e JF,[ ev? e J ([~ 1—0
me am ‘Q—%B"mﬂ((b‘av"*)df
Qs o7t2J J (¢_ —V. A)dfdf} (87

In above derivation, we have used the following expressions

for the gyroaverage:

rr

VBeritical™ 5~ —

Ro ps’ @
For standard tokamak parametess,i.o iS not a very small
number. Howeverw, is geometry dependent in complex
geometries. It can be reduced to be as smatbgs even at
low B. Another interesting limit is wherk, approaches zero
around mode rational surfaces, so that could be much
smaller than its normal characteristic value. In both case
there would be strong coupling between the shear ‘Alfve
branch and the drift branch.

B. Compressional Alfve “n wave

In this subsection, the simplest example of the compres-

sional Alfven wave in a homogeneous magnetized plasma is

used to demonstrate the essence of the pullback formula in

the perpendicular directiorB, is assumed to be in the,
direction, and for simplicity, we lek=kyg,. The MHD re-
sults for the compressional Alfmewave indicate that the
magnetic perturbation is in the parallel direction, the electri-
cal perturbation, and current perturbation are inghdirec-
tion, and the plasma displacement is in &elirection. From
the kinetic point of view, we can choos¢=0 and A
=Ae,. Assuming A, focdwiel the linear gyrokinetic
equation Eq(55) leads tof =0.

Interesting physics is found in the gyrocenter pullback
transformation, which requires the knowledge $fLet S
=50+ ¢, SW+ 252+ 0(ed), where e,=w/Q<1. To
the third order, the solution of E@52) for S is

noul=[ f V [GY* (Fo+f)](Z2)8(X+p— r)dGZ]

H1=<e¢(X+p,t)— gV-A(X+p,t)>

2

~el p(Xt)— = UA”(x O+ oL

Bi(X, t)} (88)

The perpendicular Ampe’s law is needed to complete this
system of equations. For this purpose, it is necessary to ob-
ain the perturbed perpendicular current,

1
=f V, 8(X+p—r)f(Z2)d®Z

—ev?
QZC BH

IFq
f V, (X4 p-r)— 20

mc Jdu
e o"f
0% at

_gﬁff f (¢——v A)dgdg}dﬁz (89)

¢——v A)d§

FLR effects are ignored here, and use has been made of the
following expression for the particle perpendicular velocity

1=V, [sin(§)e+cogé)e]. (90

Finally, the perturbed perpendicular flow is
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—fvax eaFOeaflv A.d —fde3+f5x+ © 750F0 46
Nou, = | V& r)ﬁm 027 | o ViALde ni= | Jofd’w (X+p r)m_ca_gﬁ
e & 1 —e_ < nl(ipk)
6 : PY)
_?Wf ngL-Aldgdgld z :f [e” Vé(X—r)]?Fon;w (n”_a) énépd®z.
B —iwnoezBA . wznerBA N (96)
= 2702 2203
m?c?0? YT e ™ Using the facts that
NoC nomc® JE
:?Exmﬁ—&—;. (92) f [eP'Va(X—r)]QdGZ=J5(X—r)e_”'VQdGZ, (97
It is obvious that the perpendicular current is generated bynd
the ion polarization drift, 2m
f dMNEqe= 5. o, (98)
) nem;c 0
j=2 (engu))j= —go— w A (92)
] we have
The perpendicular Ampe’s law (VXVXA), =4mx/cj, B 2 j —Nge¢d vfﬂ)f
gives M= 2atim®2) 1 P 2Tm
4arngm, Zonl_(—ipk) I (ipk
kiszT(uzAx, or wzzkivi. (93 X > n((nf%n( P )vidv”dvl. (99
n=-—ow

This is the dispersion relation for the compressional Alfve Carrying out the algebra with the help of some identities
wave. The key element in this gyrokinetic description of therelated to the Bessel functioAswe obtain
compressional Alfve wave is the perturbed perpendicular

current. ToO(e,,), the perpendicular flow is thExB flow, n=n % i 2n? extd — k2T | k2T
which gives no current. Therefore, it is necessary to goto * "° T i& (w|® | Q’m/ " Q°m)
O(ei). The current to this order is the current generated by al
the polarization drift in the perturbed electromagnetic field. (100
C. Bernstein wave Finally, the Poisson equation V2¢=2j4w(en1)j gives the
In this subsection, the Bernstein wave and is recoveredliSPersion relation of the Bernstein wave,
and the applicatior_1 of the pullback transform_ations to high 4mnge? & 212 K2T K2T
frequency modes is demonstrated. We consider an electrdzz > 2 > exp — 75— |lnl =5=].
. C . 7 Tk =1 e Q°m/ ™" Q°m
static wave propagating in a homogeneous magnetized —| —n2
plasma witho~ ). Let Bo=Be, andk=ke,. The solution Q (100

for the linear gyrokinetic equation givé=0 becausek;
=0. As in the case of compressional Alfvavave, f, the
gyrophase independent part of the distribution function, doe¥- CONCLUSIONS
not play any role, and the only physics content is found in
the pullback of the perturbed density, which requires ex
pressing the gauge functio8 in terms of the perturbed
fields. The equation foB is

The pullback transformations associated with the phase
‘space coordinate system transformations have been devel-
oped here in the context of gyrokinetic theory. The necessity
of such an approach arises from the existence of three differ-
ent coordinate systems in the gyrokinetic theory. The famil-

asS dS . . o
{SHol=0—+ — iar gyrocenter coordinate system, where the gyromotion is
g ot decoupled from the rest of particle’s dynamics, is noncanoni-

cal and nonfibered. On the other hand, Maxwell’'s equations,

o~ T v ﬂ which are needed to complete a kinetic system, are first only
=ep(X+p)=e et —Jo i ¢- (94 defined in the fibered laboratory phase space coordinate sys-

tem. The pullback transformations are needed to connect the

Using the identity exp(c055=2?1°: _mln(k)exp(i@. we can distribution functions in the gyrocenter coordinates and Max-
easily solve Eq(94) for S, well's equations in the laboratory phase space coordinates. In
order to gain a systematic understanding of the mathematical
e e I(ipk) nE construction and physical implications of the pullback trans-
S= ﬁ‘lo‘ﬁ"’ ﬁn;_x i(n—o) . (99 formations, a geometricoordinate independentiewpoint
has been for the moment integrals originally defined in the
where w=w/Q. Since f=0, the density response comes laboratory phase space coordinate system. The moment inte-

only from the pullback transformation, grals in kinetic theories are geometrically interpreted as in-
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