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The pullback transformation of the distribution function is a key component of gyrokinetic theory.
In this paper, a systematic treatment of this subject is presented, and results from applications of the
uniform framework developed are reviewed. The focus is on providing a clear exposition of the
basic formalism which arises from the existence of three distinct coordinate systems in gyrokinetic
theory. The familiar gyrocenter coordinate system, where the gyromotion is decoupled from the rest
of particle’s dynamics, is noncanonical and nonfibered. For the phase space~cotangent bundle
T* M ) associated with a configuration spaceM , a nonfibered coordinate system~X, V! is a
coordinate system whereX is not necessarily the coordinates for the configuration spaceM , andV
is not necessarily the coordinates for the cotangent fiberTx* M at eachx. On the other hand,
Maxwell’s equations, which are needed to complete a kinetic system, are initially only defined in the
fibered laboratory phase space coordinate system. The pullback transformations provide a rigorous
connection between the distribution functions in gyrocenter coordinates and Maxwell’s equations in
laboratory phase space coordinates. This involves the generalization of the usual moment integrals
originally defined on the cotangent fiber of the phase space to the moment integrals on a general
six-dimensional symplectic manifold. The resultant systematic treatment of the moment integrals
enabled by the pullback transformation is shown to be an important step in the proper formulation
of gyrokinetic theory. Without this vital element, a number of prominent physics features, such as
the presence of the compressional Alfve´n wave and a proper description of the gyrokinetic
equilibrium, cannot be readily recovered. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1640626#

I. INTRODUCTION

Most of the interesting plasmas in laboratory and space
environments involve the presence of magnetic field. The
particle’s motion in a magnetized equilibrium consists of a
fast gyromotion and a slow guiding center motion. It is this
fast gyromotion which restricts the allowable time step in
particle simulations of the associated dynamics in the labo-
ratory phase space coordinate frame. Over the past 20 years,
a primary goal of the gyrokinetic theory developed formal-
ism has been to remove the fast gyromotion from the kinetic
system for low frequency and long parallel wavelength
phenomena.1–15Progress in this area has enabled gyrokinetic
particle simulations, which use a much larger time step than
the time scale of gyromotion,7,16–22 to be successfully ap-
plied in studies of the transport problems of fusion plasmas.
In particular, gyrokinetic theory offers a simplified version of
the Vlasov–Maxwell system by utilizing the fact that in
strongly magnetized plasmas the particle’s gyroradius is
much smaller than the scale length of the magnetic field:
eB[ur/LBu!1, where LB[uB/¹Bu. More fundamentally,
gyrokinetic theory requires the construction of a gyrocenter
coordinate system in which the particle’s gyromotion is de-
coupled from the rest of the particle dynamics. The Vlasov–
Maxwell equation system can then be derived in this special
coordinate system.23–28 Guiding center coordinates are em-
ployed in the magnetostatic case, while gyrocenter coordi-
nates are employed when there are electromagnetic perturba-
tions in the system. Modern gyrokinetic theory12–15,23–28

utilizing noncanonical Hamiltonian and phase space Lie per-
turbation method4–6 has been carefully established over a
number of years. It not only sets up a rigorous and system-
atic foundation for the gyrokinetic framework, but also clari-
fies numerous confusing concepts and introduces much more
physics content into the theory. Specifically, gyrokinetic
theory has been extended to deal with arbitrary frequency,
arbitrary wavelength, electromagnetic perturbations in gen-
eral geometries.23–28

One of the key components of modern gyrokinetic
theory is the pullback transformation of the distribution func-
tion. Premature versions of the pullback transformation have
appeared in various formats in the course of the development
of the gyrokinetic theory over the last 40 years. It is now
clear that the pullback transformation is responsible for
many important physics properties in gyrokinetic theory.
Prominent examples include the polarization drift density in
the gyrokinetic Poisson equation,7 the polarization current in
the gyrokinetic Ampe`re’s law which accounts for the com-
pressional Alfve´n wave,25 and the pressure balance equation
for gyrokinetic equilibrium.27 In this paper, a systematic
treatment of this subject will be presented together with a
brief summary of key results from applications of the uni-
form framework developed.

In Sec. II, the general theory of coordinate transforma-
tions and their pullback transformations in phase space are
developed. The concept of nonfibered phase space coordi-
nates is introduced and the phase space moment integral is
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generalized into a parameterized integral of a moment
6-form in the 6D phase space. It is emphasized that the the-
oretical formulation in Sec. II is much more general than the
gyrokinetic theory. For example, it applies to other physics
problems involving phase space coordinate transformation,
e.g., Vlasov–Maxwell system for periodically focused
charge particle beams. In Sec. III, the pullback associated
with the guiding center transformation is described with em-
phasis placed on the underlying physics. The pullback asso-
ciated with the nonsymplectic gyrocenter transformation
needed to deal with time dependent electromagnetic field is
presented in Sec. IV. Finally, in Sec. V, the general implica-
tions of the pullback transformation for gyrokinetic theory
are summarized.

II. COORDINATE TRANSFORMATIONS
AND THEIR PULLBACK TRANSFORMATIONS
IN PHASE SPACE

A. Fibered phase space coordinate system

Physics is geometric and independent of coordinates,
even though it can be more efficiently described with the
help of coordinates. All possible choices of coordinate sys-
tems should be equivalent in terms of analyzing the physics
of interest. If two coordinate systems are connected through
a transformation, then the physics content must be invariant
with respect to the transformation. However, the mathemati-
cal involvement of different coordinate systems is indeed
different when describing the same physics. For a given
physics problem, the natural first step is to find the most
efficient coordinate system. This can usually be constructed
by imposing the desired mathematical structures. More often
than not, it is constructed by perturbations around an obvious
choice of coordinate system through a near identity coordi-
nate transformation. In this sense, perturbation methods in
physics are really about the quest for useful coordinates. In
the present analysis, attention will be focused on the coordi-
nate transformations in the 6D phase space for a single non-
relativistic classical particle. A coordinate transformation for
the phase spaceP of dimension 6 can be locally represented
by a map between two subsets of theR6 space,T:z°Z
5T(z). As illustrated in Fig. 1, for the same pointp in phase
space, there could be more than one coordinate system. The

correspondence between two different coordinate systems for
the same point in phase space is the coordinate transforma-
tion. In the present study, it is assumed that a coordinate
transformation can be represented by a single map almost
everywhere. The subset of coordinates which cannot be cov-
ered by the single map has zero measure and does not con-
tribute to the moment integrals.

Kinetic theory deals with a particle distribution function
f , which is a function defined on the phase spaceP, f :P
→R. In addition, kinetic theory in its common form implic-
itly makes use of the fact that the phase space is the cotan-
gent space~cotangent bundle! of a configuration space
~manifold! M , P5T* M . We call a coordinate system~x, v!
a fiber coordinate system ifx is the coordinate forM , andv
is the coordinate for the cotangent fiberTx* M at x. Note that
the symbol ‘‘v’’ is used to represent the cotangent fiberTx* M
at x. It can be viewed as a short form ofp/m, wherep is the
momentum andm is the relativistic mass, ifp is used to
represent the cotangent coordinates. A fiber coordinate sys-
tem for the cotangent bundle of the laboratory configuration
space will be referred to as the laboratory phase space coor-
dinate system. The familiar moment integrals are actually
fiber integrals of moment functionsq:P→R performed on
the cotangent fiberTx* M at eachx. In the laboratory phase
space coordinate system~x, v!, the moment integral of a
moment functionq(x,v) has the form

q~x!5E
Tx* M

q~x,v ! f ~x,v !d3v. ~1!

The moment integrals yield results which are functions on
the laboratory configuration spaceM . These integrals are
themselves independent of the coordinate systems used for
the cotangent fiberTx* M at eachx. In other words,q(x) is
invariant under a fiber coordinate transformation, i.e., a co-
ordinate transformation that transforms only the fiber coordi-
natev. Letting wx :v→V be a fiber coordinate transforma-
tion which in general depends onx, the invariance ofq(x)
can be expressed as

q~x!5E
Tx* M

q~x,v ! f ~x,v !d3v5E
Tx* M

Q~x,V!F~x,V!d3V,

~2!

where q(x,v) f (x,v)d3v and Q(x,V)F(x,V)d3V, are the
representations of the same 3-forms in~x, v! and ~x, V!,
respectively. Hered3v andd3V can be viewed as the volume
forms of Tx* M at eachx. For example, in a magnetized
plasma, the well-known (v i ,m,u) velocity coordinates, as
well as the Cartesian velocity coordinates, can be used to
calculate the same moment integrals,

q~x!5E q~x,v1 ,v2 ,v3! f ~x,v1 ,v2 ,v3!dv1∧dv2∧dv3

5E Bi

m
Q~x,v i ,m,f!F~x,v i ,m,f!dv i∧dm∧du. ~3!

In this example, the volume formdv1∧dv2∧dv3 is canoni-
cal whereas the volume form (Bi /m)dv i∧dm∧du is nonca-

FIG. 1. In Sec. III, we investigate the physics of guiding center pullback
transformation. The gyrocenter pullback transformation is studied in Sec. IV.
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nonical. The most noticeable difference between them is that
the former is a constant and the latter dependsx.

B. Nonfibered phase space coordinate system

In gyrokinetic theory, however, useful coordinate sys-
tems are nonfibered. A nonfibered coordinate system~X, V!
is a coordinate system whereX is not necessarily the coor-
dinates for the configuration spaceM , andV is not necessar-
ily the coordinates for the cotangent fiberTx* M at eachx. A
nonfibered coordinate transformation, by definition, transfers
a fibered coordinate system into a nonfibered one. In the
context of gyrokinetic theory,~X, V! can be either guiding
center coordinates or the gyrocenter coordinates, both of
which are nonfibered. The construction of the guiding center
coordinates and the gyrocenter coordinates will be described
in detail in Secs. III and IV. The discussion in this section
applies to any general nonfibered coordinate systems and
nonfibered transformations.

No matter which nonfibered coordinate system is used,
the moment integrals are still defined on the cotangent fiber
Tx* M at eachx, andq(x) should be invariant under such a
general nonfibered coordinate transformation. For the new
coordinate system~X, V! to be useful, it is necessary to know
the construction ofq(x) in it. To be specific, the scenario
studied in this paper is that the distribution functionf (x,v) is
known in the transformed nonfibered coordinate system~X,
V! asF(X,V), whereasq(x,v) as a physical quantity, such
as the position and the velocity, is only meaningfully defined
in the laboratory phase space coordinate system~x, v!. Given
q(x,v) and F(X,V), there are two methods to calculate
q(x). The first method is to pull back the distribution func-
tion F(X,V) into f (x,v), and the second method depends on
the generalization of the concept of moment integrals.

The first method, where the distribution functionF(X,V)
is pulled back31 into f (x,v), can be written as

q~x!5E
Tx* M

q~x,v !w* @F~X,V!#d3v, ~4!

where

w* @F~X,V!#5F~X~x,v !,V~x,v !!5 f ~x,v !. ~5!

In the second method, we consider the generalization of
the usual moment integrals originally defined on the cotan-
gent fiberTx* M at eachx to the moment integrals on a gen-
eral 6D symplectic manifoldP. This can be accomplished by
two different approaches. The first approach is to viewTx* M
as an orientable 3-subset ofP and q(x) as an integral of a
moment 3-forml over such an 3-subset,

q~x!5E
Tx* M

l. ~6!

In the laboratory phase space coordinates~x, v!, the moment
3-form l is defined as

l5q~x,v ! f ~x,v !d3v, ~7!

whered3v is the volume form forTx* M at a fixedx. In a
general nonfibered coordinate system (X,V)5w(x,v), l is
pulled back from its form in~x, v!,

L5w21* l5w21* @q~x,v ! f ~x,v !d3v#

5@w21* q~x,v !#@w21* f ~x,v !#@w21* d3v#, ~8!

where

w21* q~x,v !5Q~X,V![q~x~X,V!,v~X,V!!, ~9!

w21* f ~x,v !5F~X,V![ f ~x~X,V!,v~X,V!!. ~10!

Here it has been assumed that the transformationw is a dif-
feomorphism~one–one onto and smooth!, and w21* @or
(w21)* ] is the pullback associated withw21, which maps
any function on~x, v! into a function on~X, V!. w21* can
also be called the pushforward associated withw if w is a
diffeomorphism. Therefore, in a general nonfibered coordi-
nate system~X, V!, q(x) can be expressed as

q~x!5E
Tx* M

l5E
Tx* M

w21* l

5E
U5$(X,V)ux(X,V)5const%

L

5E
U5$(X,V) ux(X,V)5const%

@w21* q~x,v !#F~X,V!

3@w21* d3v#. ~11!

If the coordinatesv5(v1 ,v2 ,v3) for Tx* M are canoni-
cal,

d3v5dv1∧dv2∧dv3 , ~12!

then

w21* @d3v#5dv1~X,V!∧dv2~X,V!∧dv3~X,V!. ~13!

There are practical difficulties associated with using Eq.~11!
to calculateq(x). First, the pullback of the volume form
w21* d3v has 20 terms in general, because the dimension of
a general 3-form in the 6D phase space is 20. Second, the
integration domain expressed in the~X, V! coordinate system
is complicated.

To get around these difficulties, the concept of a moment
integral can be generalized by a different approach. Specifi-
cally, a moment integral is generalized into a parameterized
integral of a moment 6-forml r in the 6D phase space

i ~r!5E l r , ~14!

l r5 i ~r,z! f ~z!d6z, ~15!

wherez5(x,v) is phase space coordinate,r is a set of inde-
pendent parameters,i (r,z) is a moment function of the phase
space and the parametersr, andd6z is the Liouville volume
from given by the symplectic structurev in the phase space

d6z5
21

3!
v∧v∧v. ~16!

In a canonical coordinate system

v5(
i 51

3

dxi∧dv i , ~17!

d6z5dx1∧dx2∧dx3∧dv1∧dv2∧dv3 . ~18!
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Under a nonfibered coordinate transformationw, i (r) is ob-
tained through the pullback of ther-parameterized 6-form
l r ,

i ~r!5E w21* l r5E w21* @ i ~r,z! f ~z!d6z#

5E w21* @ i ~r,z! f ~z!#d6Z, ~19!

whered6Z is the Liouville volume form of~X, V!

d6Z5w21* d6z. ~20!

If ( x,v)5(x1 ,x2 ,x3 ,v1 ,v2 ,v3) is a canonical coordinate
system,d6Z can be straightforwardly expressed as

d6Z5w21* d6z

5dx1~X,V!∧dx2~X,V!∧dx3~X,V!∧dv1~X,V!∧dv2

3~X,V!∧dv3~X,V!. ~21!

But in almost all the cases of practical interest, the Liouville
volume formd6Z5w21* d6z of ~X, V! is more conveniently
calculated through the pullback of the symplectic structure

d6Z5
21

3!
V∧V∧V, ~22!

V5w21* v. ~23!

One major difference between a canonical volume form and
a noncanonical one is that the canonical volume form is a
constant where the noncanonical volume form is generally a
function of the phase space through its dependence on field
variables. For the case of the gyrocenter coordinate system
which will be discussed in Sec. IV, the volume form nontrivi-
ally depends on the perturbed electromagnetic fields. The
usual moment integrals are special cases of the generalized
moment integrals when

i ~r,z!5d~x2r!q~z!. ~24!

That is

q~r!5E
Tr* M

q~r,v ! f ~r,v !dv

5E d~x2r!q~x,v ! f ~x,v !d6z. ~25!

From Eq.~19!, the construction ofq(r) using the distribution
function in the nonfibered coordinate systemF(X,V) is

q~r!5E w21* @d~x2r !q~x,v ! f ~x,v !d6z#

5E w21* @d~x2r!#w21* @q~x,v !#

3w21* @ f ~x,v !#d6Z

5E d~x~X,V!2r!Q~X,V!F~X,V!d6Z. ~26!

Equations~4!, ~11!, and ~26! are equivalent and can be
used interchangeably to simplify the calculation. In practice,

the pullbacks involved are often associated with coordinate
perturbation transformations, and thus can be further simpli-
fied by the perturbation techniques adopted. For example, the
term d(x(X,V)2r) can be Taylor expanded in terms of the
small perturbation parameter such that the integration in Eq.
~26! can be carried out order by order. The connection be-
tween the single particle dynamics and the moment integral
through the symplectic structure as shown in Eqs.~20!, ~22!,
and~23! is of significant importance. First of all, the volume
form needed to perform phase space integrals is given by the
same symplectic form governing the single particle dynam-
ics. No metric is needed for the gyrokinetic Vlasov–Maxwell
system, and it is purely symplectic. Second, the Liouville
volume formd6Z5w21* d6z of ~X, V! will assume the same
functional form asd6z of ~x, v!, and the calculation of phase
space integral in Eq.~26! is simplified, ifw21* preserves the
symplectic structure of~x, v!

V~Z!5w21* v~z!5@v~z!#z→Z . ~27!

If no obvious phase space structure exists, Eq.~4! will be
preferred. Such examples will be presented in Secs. III and
IV in the context of the gyrokinetic theory.

III. PULLBACK ASSOCIATED WITH THE GUIDING
CENTER COORDINATE TRANSFORMATION

This section deals with the pullback associated with the
guiding center transformation, which is a necessary theoret-
ical construction for analyzing the gyrokinetic equilibrium.27

Such an analysis is required for a proper understanding of
magnetized plasmas in equilibrium using the guiding center
coordinates. The gyrokinetic equilibrium is of fundamental
importance for the widely adopted perturbative gyrokinetic
particle simulation (d f method!,18–22 where the equilibrium
distribution function and the electromagnetic field are as-
sumed to be known. Gyrokinetic equilibria consistent with
the well-studied fluid ones are obviously necessary for the
perturbative gyrokinetic particle simulations to be reliable. In
particular, recent numerical studies of equilibria with zonal
flows22 raise again the question of how to describe the equi-
librium flow from the gyrokinetic point of view. The essence
of the problem studied here is how to relate the measurable
quantities in the laboratory frame to the information in the
guiding center coordinates. Given a distribution function
F(X,Vi ,m) in the guiding-center coordinatesZ
5(X,Vi ,m,j), how are the fluid density, flow, and current
calculated? Do the macroscopic field variables calculated
from the gyrokinetic formalism satisfy the fluid equations
obtained by taking the moments of the Vlasov equation in
the laboratory phase space coordinates? The pullback formu-
las derived in Sec. II give answers to these questions, when
applied to the guiding center transformation.

First, the guiding center transformationG:z°Z, which
transforms the laboratory phase space coordinatesz5(x,v)
into the guiding center coordinatesZ5(X,Vi ,m,j) is
needed. It turns out that almost all the important terms in the
equilibrium equations can be generated by applying the pull-
back formulas to the simple leading order guiding center
transformation
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X5x2r01O~e!,

Vi5v i1O~e!,
~28!

m5m01O~e!,

j5u1O~e!,

where (x,v i ,v' ,u) is the usual laboratory phase space co-
ordinates.r0 andm0 , defined in particle coordinates, are the
usual gyroradius and magnetic moment.u is chosen such that
v̂'52e/ueu(ex sinu1ey cosu). ex and ey are two perpen-
dicular directions in the configuration space, and (ex ,ey ,b) is
a right-handed orthogonal frame.

For the guiding center transformationG:z°Z, Eq. ~26!
becomes

q~r!5E q~r,v ! f ~r,v !d3v

5E q~z! f ~z!d~x2r!d6z

5E G21* @q~z!d~x2r!#F~Z!d6Z

5E Q~Z!d@X1r2r#F~Z!d6Z, ~29!

where it is assumed that the guiding center transformationG
is a diffeomorphism~one–one onto and smooth! almost ev-
erywhere, and

d6Z[Bi* /md3XdVidmdj,

Bi* 5b•B* , B* 5B1
cmVi

e
¹3b,

~30!
Q~Z!5G21* q~z!,

r5G21* r0 .

The physics encapsulated in the pullback formula Eq.~29! is
that an observableq(r) at a certain locationr in the labora-
tory frame is the average of its microscopic counterpart ex-
pressed in the guiding center coordinatesQ(Z) over nearby
guiding centers withX(Z)1r(Z)5r. This is illustrated in
Fig. 2, where three examples of such guiding centers are

shown. For the number density in laboratory phase space
coordinates, we useq(z)51 andG21* 151,

n~r!5E d~X1r2r!F~Z!d6Z

5E d~X2r!F~Z!d6Z1O~e2!

52pE F~Z!Bi* /mdVidmU
X°r

1O~e2!, ~31!

where ‘‘uX°r’’ means replacingX by r.
For the fluid velocity in laboratory phase space coordi-

nates u~r!, we have q(z)5v5 ẋ, G21* v5Ẋ1ṙ(X)
1O(e2), and

u~r!5E ~Ẋ1ṙ!d~X1r2r!F~Z!d6Z1O~e2!

5E @Vib1VE3B1Vd#d~X2r!F~Z!d6Z

1E ṙd~X1r2r!F~Z!d6Z1O~e2!. ~32!

The first term can be reduced to

E @Vib1VE3B1Vd#d~X2r!F~Z!d6Z

5FnUib1
c

B
nE3b1

c

eB
b3S W'

¹B

B
1Wib•¹bD GU

X°r

1O~e2!,

where

U i[
2p

n E ViBi* /mF~Z!dVidm, ~33!

W'[2pE BmF~Z!Bi* /mdVidm, ~34!

Wi[2pE mVi
2F~Z!Bi* /mdVidm. ~35!

The second term is the diamagnetic flow, which can be sim-
plified in terms ofW' ,

E ṙd~X1r2r!F~Z!d6Z

5E ṙr•¹d~X2r!F~Z!d6Z1O~e2!

52E ¹•@rṙBi* /mF~Z!#d~X2r!dVidmdj1O~e2!

52
c

e
¹3S b

W'

B D U
X°r

1O~e2!. ~36!

In Eq. ~36!, the following equations are used:

ṙ5$r,H%5A2mB

m
ej1O~e!, ~37!

FIG. 2. The physics of the pullback formula.
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S E ṙrdj D
i j

5
2pmc

e
e i j b1O~e!. ~38!

Heree i j b is the Kronecker symbol, and the subscriptb rep-
resents the dimension parallel toB.

Overall,

n~r!u~r!5FnUib1
cb

eB
3~W'¹B1Wib•¹b!1

cn

B
E3b

1
c

e
¹3S W'

B
bD GU

X°r

1O~e2!. ~39!

It can be shown that then(r) and n(r)u(r) derived above
satisfy the usual fluid equations derived from the Vlasov
equation in the laboratory phase space coordinate system by
taking the velocity moments.27 As an example, the equilib-
rium force balance equation can be recovered here. First, it is
shown that

W'~r!52pE BmF~Z!Bi* /mdVidmU
X°r

5E 1

2
mv'

2 f d3v1O~e!5p'~r!1O~e!, ~40!

Wi~r!52pE mVi
2F~Z!Bi* /mdVidmU

X°r

5FmnUi
212pE m~Vi2U i!

2F~Z!Bi* /mdVidm GU
X°r

5mnui
2~r!1pi~r!1O~e!. ~41!

From Eq.~39!,

nu'5H cb

eB
3~W'¹B1Wib•¹b!1

cn

B
E3b

1
c

q F¹3S W'

B
bD G

'
J U

X°r

1O~e2!

5
c

e H 2
¹p'3b

B
1p'Fb3¹B

B2 2S ¹3
b

BD
'
G

1pi

~¹3b!'
B

1mnui
2 ~¹3b!'

B J
1n

E3b

B
c1O~e2!. ~42!

Using

~u•¹u!3b52ui
2~¹3b!'1O~e2!, ~43!

b3¹B

B2 2S ¹3
b

BD
'

52
~¹3b!'

B
, ~44!

then leads to the result,

nu'52
c

eB
@mnu•¹u3b1¹'p'3b

2~pi2p'!~¹3b!'2enE3b#1O~e2!. ~45!

The first term on the right-hand side of the above equation is
smaller than the left-hand side by a factor ofr/L, wherer
and L are the characteristic gyroradius and scale length of
the equilibrium flowu. In tokamak experiments, this term is
often neglected whenEr is evaluated from the spectroscopic
measurements of flows and pressure gradient.29 For a neutral
plasma

j'5(
s

~enu!s5
c

B Fb3¹(
s

p'

1S (
s

pi2(
s

p'D ~¹3b!'G . ~46!

This is the transverse equilibrium force balance equation. In
particular, when the distribution functionF is isotropic,
(spi5(sp'5(sp, the familiar fluid result, j'5c/Bb
3¹(sp, is recovered.

In the above derivation, the pullback formula has been
used in the form of Eq.~26!. The pullback formula in the
form of Eq. ~4! can be used to obtain the same results.

IV. PULLBACK ASSOCIATED
WITH THE NONSYMPLECTIC GYROCENTER
CENTER COORDINATE TRANSFORMATION

When time-dependent electromagnetic perturbations are
introduced into a magnetized plasma, the guiding center co-
ordinates used in Sec. III to study the gyrokinetic equilib-
rium will cease to be the ‘‘good’’ coordinate system where
the gyromotion is decoupled from the rest of particle dynam-
ics. To preserve the desirable decoupling of the gyromotion,
a nonsymplectic gyrocenter transformation,

Gy:Z5~X,U,m,j!°Z̄5~X̄,Ū,m̄,j̄ !, ~47!

can be constructed using a Lie perturbation method such that
the transformed symplectic structure has the same functional
form as that in the unperturbed guiding center coordinates.
Because the perturbation on the symplectic structure of the
guiding center is ‘‘deperturbed away’’ by the perturbative
gyrocenter coordinate transformation, particle dynamics in
the gyrocenter coordinates are exactly the same as those in
the guiding center coordinates except for a perturbation in
the Hamiltonian. Since two consecutive coordinate transfor-
mations are involved, two pullback transformations are
needed to relate the distribution function in the gyrocenter
coordinatesFGy to the macroscopic physical quantities in the
laboratory coordinatesq(r). In the guiding center coordinate
Z5(X,U,m,j),

q~r!5E @G21* q#~Z!F~Z!d~G21X2r!d6Z. ~48!

Using Eq.~26! again, we have

q~r!5E @Gy
21* G21* q#~ Z̄!F~ Z̄!d~Gy

21G21X̄2r!d6Z̄.

~49!

Alternatively, we can use Eq.~4! to replaceF(Z) by its
pullback from the gyrocenter coordinate to obtain
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q~r!5E @G21* q#~Z!@Gy* FGy#~Z!d~G21X2r!d6Z.

~50!

In the above equations,d6Z is understood to be
(Bi* /m)d3XdUdmdj. Gy* is the pullback transformation
associated with the gyrocenter transformation, which trans-
forms the distribution function in the gyrocenter coordinates
into that in the guiding center coordinates.G21 is the inverse
of G that transforms the laboratory phase space coordinate
system into the guiding center coordinates. It is assumed that
the guiding center transformationG and the gyrocenter
transformation Gy are bijective and smooth. The relationship
between the three coordinate systems involved and the ob-
jects defined on them are illustrated in Fig. 3. Covariant ob-
jects such as functions and forms are pulled back by the
associated coordinate transformation, while contravariant ob-
jects such as vectors are pushed forward.

The pullback transformation from the gyrocenter coordi-
nates to the guiding center coordinates is easily obtained
from the expression forG given by Refs. 14, 23–25. Since
the focus of this paper is not the gyrocenter coordinate trans-
formation, the expression for the pullback transformation is
displayed in terms of the perturbed fields (A1 ,f1) without
derivation,

Gy* F5F1LGF5F2
b

B
3S A11

c

e
¹SD •¹F

1
e

mc
b•S A11

c

e
¹SD ]F

]U

1
e

mcFe

c
A1•

]r

]j
1

]S

]j G ]F

]m
1O~eB!,

~51!

where the gauge functionS satisfies

$S,H0%5V
]S

]j̄
1

]S

]t
1

]S

]X̄
•$X̄,H0%1

]S

]Ū
$Ū,H0%

5ef̃1~X̄1r,t !2
e

c
V̄•Ã1~X̄1r,t !, ~52!

in the coordinates (X̄,Ū,m̄,j̄). Here, f̃1(X̄1r,t) and
V̄•A1(X̄1r,t) are the gyrophase dependent parts off1(X̄
1r,t) and V̄•A1(X̄1r,t), respectively,

f̃1~X̄1r,t !5f1~X̄1r,t !2^f1~X̄1r,t !&, ~53!

V̄•A1~X̄1r0 ,t !5V̄•A1~X̄1r,t !2^V̄•A1~X̄1r,t !&,
~54!

andH0 is the unperturbed Hamiltonian

H05
mŪ2

2
1m̄B.

In the coordinates (X̄,Ū,m̄,j̄), the linear gyrokinetic
equation is

] f

]t
1~Ūb1vd!•¹ f 2

1

m
b•¹H0

] f

]Ū

5
c

eB
b•~¹F03¹H1!2

1

m
b•S ¹F0

]H1

]Ū
2¹H1

]F0

]Ū
D ,

~55!

where

F5F01 f , ~56!

H15 K ef1~X̄1r,t !2
e

c
V•A1~X̄1r,t !L . ~57!

FIG. 3. Coordinate transformation and
the associated pullback and push-
forward.
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The importance of the pullback formula in Eqs.~50! and~51!
is demonstrated in the following nontrivial examples. We
note that Eqs.~50! and~51! are written in the guiding center
coordinates, while Eqs.~52! and ~55! are in the gyrocenter
coordinates. In the following equations,A andf will be used
to represent the perturbed field. The subscript ‘‘1’’ will be
dropped.

A. Gyrokinetic shear Alfve ´n wave

For shear Alfve´n physics, we can only keep the parallel
component of the vector potentialA5Aib. To the leading
order, Eq.~52! for shear Alfvén modes reduce to

V
]S

]j̄
5

e

V
F f̃~X̄1r,t !2

1

c
UÃi~X̄1r,t !G

'
e

V
r0•F¹f~X̄,t !2

1

c
U¹Ai~X̄,t !G . ~58!

Using Eq. ~51!, we have the pullback transformation for
shear Alfvén modes,

Gy* F5F1
e

mc
Ai~X1r,t !

]F

]U

1
e

B F f̃~X1r,t !2
1

c
UÃi~X1r,t !G ]F

]m
. ~59!

The perturbed density, perturbed flow, and perturbed current
can be derived from the general form of Eq.~50!,

n1~r!5 H E @Gy* ~F01 f !#~Z!d~X1r2r!d6ZJ
1

5E f ~Z!d~X2r!d6Z1E @d~X1r2r!

2d~X2r!# f ~Z!d6Z1E d~X1r2r!

3H e

mc
Ai~X1r,t !

]F0

]U
1

e

B F f̃~X1r,t !

2
1

c
UÃi~X1r,t !G ]F0

]m J d6Z. ~60!

From Eq. ~60!, the perturbed density in laboratory coordi-
nates consists of three parts corresponding to the three inte-
grals on the right-hand side of the equation. The first integral
is the perturbed density in gyrocenter coordinates, the second
integral is the guiding center correction, and the third inte-
gral is the gyrocenter correction. After some lengthy algebra,

n1~r,t !5E J0f ~r,U,m,t !d3v1
e

m
¹'

n0

V2 ¹f~r,t !

1
3

4

ev t
2n0

mV4 ¹'
4 f~r,t !, ~61!

whered3v52p(B/m)dUdm, J05J0(v'¹' / iV) is the ze-
roth order Bessel function of the first kind, and only terms up

to O(v'
4 ¹'

4 /V4) for the LGF0 part of the pullback transfor-
mation Gy* have been retained. For the perturbed parallel
flow,

n0ui1~r!5 H E U@Gy* ~F01 f !#~Z!d~X1r2r!d6ZJ
1

5E U f ~Z!d~X2r!d6Z1E U@d~X1r2r!

2d~X2r!# f ~Z!d6Z1E Ud~X1r2r!

3H e

mc
Ai~X1r,t !

]F0

]U
1

e

B F f̃~X1r,t !

2
1

c
UÃi~X1r,t !G ]F0

]m J d6Z. ~62!

Again, the algebra here is straightforward but involved. The
final result is

n0ui1~r,t !5E J0U f ~r,U,m,t !d3v1E e

mc
^UAi~r1r0!&

3
]F0

]U
2p

B

m
dmdU1

en0v t
2

2mcV2 ¹'
2 Ai , ~63!

where the first integral on the right-hand side is the perturbed
parallel flow of the gyrocenter, and the second integral and
the third term are the gyrocenter correction generated by the
pullback transformation.

From Eq.~61!, the quasineutrality condition is

(
j

eF E J0f d3v1
e

m
¹'

n0

V2 ¹'f1
3e

4m

v t
2

V2

n0

V2 ¹'
4 fG50.

~64!

From Eq.~63!, the parallel Ampe`re’s law is

@¹3¹3A# i5
4p

c (
j

eE S UJ0f 1
]F0

]U

e

mc
^UAi& Dd3v

1
4p

c

e2n0v t
2

2mcV2 ¹'
2 Ai . ~65!

In Eqs. ~64! and ~65!, the spatial variable is the laboratory
coordinater. Howeverr is a dummy variable. What matters
is the functional forms. We can replacer by the spatial co-
ordinate of the gyrocenter coordinatesZ̄. Equations~64! and
~65! will be referred to as the gyrokinetic quasineutrality
condition and the gyrokinetic parallel Ampe`re’s law, respec-
tively.

As a simple application of these results, we derive the
local dispersion relation in an unsheared slab geometry with
B05B(x)ez andn05n0(x). For local perturbations

~f,c i!;ei (kyy1kiz), ~66!

wherec i is defined through

Ai5
c

iv
~¹c i! i . ~67!

The solution of the gyrokinetic equation, Eq.~55!, for shear
Alfvén waves in slab geometry is
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f 52
e

T
F0S f2

kiU

v
c i D1

e

T

v2v*
v2kiU

F0S f2
kiU

v
c i D ,

~68!

wherev* is the diamagnetic drift frequency defined by

v* j[S cTky

LneBD
j

, Ln[2S d ln n

dx D 21

, ~69!

and the temperature gradient has been neglected. Substitut-
ing f into the quasineutrality condition, we have,

2(
j

e2

m
¹'

n0

V2 ¹'f

52(
j

e2n0

T
@11zZ~z!#~f2c i!

1(
j

e2n0

T
zZ~z!

v*
v

~f2c i!2(
j

e2n0

T

v*
v

c i .

~70!

Z(z) is the plasma dispersion function andz[ v/kiv th .
Straightforward algebra shows that the parallel Ampe`re’s law
reduces to

ki
2c i5

v2

vA
2 f, ~71!

or in terms ofvA[kivA ,

c i5
v2

vA
2 f. ~72!

Inserting this polarization property into the quasineutral-
ity condition, we obtain the desired dispersion relation,

(
j

e2n0

mV2 ky
252(

j

e2n0

T
@11zZ~z!#S 12

v2

vA
2 D

1(
j

e2n0

T
zZ~z!

v*
v S 12

v2

vA
2 D

2(
j

e2n0

T

v*
v

v2

vA
2 . ~73!

It contains many interesting physics effects for various para-
metric regimes. Some, which are relevant to tokamak plas-
mas, will be highlighted in the following discussion.

The fluid results are generally recovered from kinetic
theory by ignoring the kinetic resonances and assuming the
so-called ‘‘hot electron, cold ion expansion,’’ that is,

ze5
v

v theki
!1, ~74!

z i5
v

v thiki
@1. ~75!

Using the Taylor expansion and the asymptotic form for
Z(z), gives

n0mic
2

B2 ky
25F2

e2ne0

Te
1

ei
2ni0

Ti
S v thiki

v D 2G S 12
v2

vA
2 D

2
ei

2n0i

Ti

v* i

v S 12
v2

vA
2 D

2Fe2ne0
2

Te

v* e

v
1

ei
2ni0

2

Ti

v* i

v G v2

vA
2

5
e2ne

Te
F211

ejTe

ueuTi
S v thiki

v D 2

1
v* e

v GF12
v2

vA
2 G .

~76!

Note the following relationship betweenv* j and v* e has
been used:

v* j52
ueuTj

ejTe
v* e . ~77!

This then leads to the familiar fluid result,30

eics
2

ueuV i
2 k'

2 5F eics
2

ueuv2 ki
2211

v* e

v GF12
v2

vA
2 G , ~78!

where

cs
2[

Te

mi
. ~79!

It is commonly believed that when the plasmab ~ratio of
plasma to magnetic pressure! approaches zero, the magnetic
perturbations are not important. However, it is not a correct
conclusion that, whenb goes to zero, there are no magnetic
perturbations. Very obvious examples are the well-known
shear Alfvén wave and the compressional Alfve´n wave in a
homogeneous magnetized plasma. Even in a zerob magne-
tized plasma, the shear Alfve´n wave and the compressional
Alfvén wave are both mathematically and physically well-
defined. The physical mechanism maintaining these two
waves is the balance between plasma kinetic energy and the
restoring force due to the bending or compression of the
equilibrium magnetic field. Theoretically, they are character-
ized by the dispersion relationsv25ki

2vA
2 and v25k2vA

2,
respectively. Their existence is independent of the plasmab.

This fact can also be verified from the dispersion rela-
tion, Eq.~70!. WhenvA@v* e , there exists a solution in the
range ofvA . For this range ofv, the dispersion relation is
reduced to

n0mic
2

B2 ky
252(

j

e2n0

T
@11zZ~z!#S 12

v2

vA
2 D . ~80!

Under normal condition, term (n0mic
2/B2) ky

2 is smaller by
O(rs

2k'
2 ), compared with the other terms. To the leading

order,

v25vA
2 . ~81!

The fact that there are no assumptions aboutze and z i

needed here to obtain this shear Alfve´n wave is consistent
with the basic physical picture of the shear Alfve´n wave. The
statement that when the plasmab is small, magnetic pertur-
bations are not important is always relevant only for a spe-

1060 Phys. Plasmas, Vol. 11, No. 3, March 2004 H. Qin and W. M. Tang

Downloaded 19 Feb 2004 to 198.35.4.108. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



cial class of electrostatic modes. In particular, for the elec-
trostatic drift waves, magnetic perturbations are decoupled
from these electrostatic perturbations whenb is small. This
is evident from the fact that

v* e

vA
→0 as b→0. ~82!

It is also evident from the polarization propertyc i

5(v/vA) f. For the electrostatic drift wave,v;v* e ,

c i5
v* e

vA
f→0 as b→0. ~83!

For the shear Alfve´n branch,v;vA ,

c i;f independent ofb. ~84!

The above facts also lead to a ‘‘bcritical’’ where there is
strong coupling between the electrostatic drift branch and the
electromagnetic shear Alfve´n branch. The criterion isv* e

;vA . In tokamak geometry, it is30

Abcritical;
r

R0

r

rs
. ~85!

For standard tokamak parameters,bcritical is not a very small
number. However,vA is geometry dependent in complex
geometries. It can be reduced to be as small asv* e even at
low b. Another interesting limit is whereki approaches zero
around mode rational surfaces, so thatvA could be much
smaller than its normal characteristic value. In both cases,
there would be strong coupling between the shear Alfve´n
branch and the drift branch.

B. Compressional Alfve ´n wave

In this subsection, the simplest example of the compres-
sional Alfvén wave in a homogeneous magnetized plasma is
used to demonstrate the essence of the pullback formula in
the perpendicular direction.B0 is assumed to be in theez

direction, and for simplicity, we letk5kyey . The MHD re-
sults for the compressional Alfve´n wave indicate that the
magnetic perturbation is in the parallel direction, the electri-
cal perturbation, and current perturbation are in theex direc-
tion, and the plasma displacement is in theey direction. From
the kinetic point of view, we can choosef50 and A
5Axex . Assuming Ax , f }eikyy-ivt, the linear gyrokinetic
equation Eq.~55! leads tof 50.

Interesting physics is found in the gyrocenter pullback
transformation, which requires the knowledge ofS. Let S
5S(0)1evS(1)1ev

2 S(2)1O(ev
3 ), where ev[v/V!1. To

the third order, the solution of Eq.~52! for S is

V
]S

]j̄
'V

]S(0)1S(1)1S(2)

]j̄
1O~ev

3 !

5eS f̃2
1

c
V•ÃD 2

e

V

]

]t
E S f̃2

1

c
V•ÃD dj̄

1
e

V2

]2

]t2 E E S f̃2
1

c
V•ÃD dj̄dj̄1O~ev

3 !.

~86!

From the general form of the gyrocenter pullback transfor-
mation we have

@Gy* ~F01 f !#1

5 f 1
e

mc

]F0

]m H 2
ev'

2

V2c
Bi2

e

V2

]

]t E S f̃2
1

c
V•ÃDdj

1
e

V3

]

]t2 E E S f̃2
1

c
V•ÃDdjdjJ . ~87!

In above derivation, we have used the following expressions
for the gyroaverage:

H15 K ef~X1r,t !2
e

c
V•A~X1r,t !L

'eFf~X,t !2
1

c
UAi~X,t !1

v'
2

2cV
Bi~X,t !G . ~88!

The perpendicular Ampe`re’s law is needed to complete this
system of equations. For this purpose, it is necessary to ob-
tain the perturbed perpendicular current,

n0u'5 H E V'@Gy* ~F01 f !#~Z!d~X1r2r!d6ZJ
1

5E V'd~X1r2r! f ~Z!d6Z

1E V'd~X1r2r!
e

mc

]F0

]m H 2ev'
2

V2c
Bi

2
e

V2

]

]t E S f̃2
1

c
Ṽ•ÃDdj

1
e

V3

]

]t2 E E S f̃2
1

c
V•ÃDdjdjJ d6Z. ~89!

FLR effects are ignored here, and use has been made of the
following expression for the particle perpendicular velocity

V'52V'@sin~j!ex1cos~j!ey#. ~90!

Finally, the perturbed perpendicular flow is
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n0u'5E V'd~X2r!
e

mc

]F0

]m H e

V2

]

]t E 1

c
V'•A'dj

2
e

V3

]2

]t2 E E 1

c
V'•A'djdjJ d6Z

5
2 ivn0e2B

m2c2V2 Axey1
v2n0e2B

m2c2V3 Axex

5
n0c

B2 E3B1
n0mc2

eB2

]E'

]t
. ~91!

It is obvious that the perpendicular current is generated by
the ion polarization drift,

j5(
j

~en0u'! j'
n0mic

B2 v2Axex . ~92!

The perpendicular Ampe`re’s law (¹3¹3A)'54p/cj'
gives

ky
2Ax5

4pn0mi

B2 v2Ax , or v25ky
2vA

2 . ~93!

This is the dispersion relation for the compressional Alfve´n
wave. The key element in this gyrokinetic description of the
compressional Alfve´n wave is the perturbed perpendicular
current. ToO(ev), the perpendicular flow is theE3B flow,
which gives no current. Therefore, it is necessary to go to
O(ev

2 ). The current to this order is the current generated by
the polarization drift in the perturbed electromagnetic field.

C. Bernstein wave

In this subsection, the Bernstein wave and is recovered,
and the application of the pullback transformations to high
frequency modes is demonstrated. We consider an electro-
static wave propagating in a homogeneous magnetized
plasma withv;V. Let B05Bez and k5kex . The solution
for the linear gyrokinetic equation givef 50 becauseki

50. As in the case of compressional Alfve´n wave, f , the
gyrophase independent part of the distribution function, does
not play any role, and the only physics content is found in
the pullback of the perturbed density, which requires ex-
pressing the gauge functionS in terms of the perturbed
fields. The equation forS is

$S,H0%5V
]S

]j̄
1

]S

]t

5ef̃~X̄1r!5eFer•¹2J0S r•¹

i
D Gf. ~94!

Using the identity exp(l cosj̄)5(n52`
` In(l)exp(inj̄), we can

easily solve Eq.~94! for S,

S5
e

V i v̄
J0f1

e

V (
n52`

`
I n~ irk!

i ~n2v̄ !
ein j̄f, ~95!

where v̄5v/V. Since f 50, the density response comes
only from the pullback transformation,

n15E J0f d3v1E d~X1r2r!
e

mc

]S

]j

]F0

]m
d6Z

5E @er•¹d~X2r!#
2e

T
F0 (

n52`

`
nIn~ irk!

~n2v̄ !
einjfd6Z.

~96!

Using the facts that

E @er•¹d~X2r!#Qd6Z5E d~X2r!e2r•¹Qd6Z, ~97!

and

E
0

2p

ei (m1n)jdj5dm,2n2p, ~98!

we have

n15
2p

~2pT/m!3/2E 2n0ef

T
expS 2

v i
21v'

2

2T/m D
3 (

n52`

`
nI2n~2 irk!I n~ irk!

~n2v̄ !
v'dv idv' . ~99!

Carrying out the algebra with the help of some identities
related to the Bessel functions,25 we obtain

n15n0

ef

T (
n51

`
2n2

S v

V D 2

2n2

expS 2
k2T

V2mD I nS k2T

V2mD .

~100!

Finally, the Poisson equation2¹2f5( j4p(en1) j gives the
dispersion relation of the Bernstein wave,

15(
j

4pn0e2

Tk2 (
n51

`
2n2

S v

V D 2

2n2

expS 2
k2T

V2mD I nS k2T

V2mD .

~101!

V. CONCLUSIONS

The pullback transformations associated with the phase
space coordinate system transformations have been devel-
oped here in the context of gyrokinetic theory. The necessity
of such an approach arises from the existence of three differ-
ent coordinate systems in the gyrokinetic theory. The famil-
iar gyrocenter coordinate system, where the gyromotion is
decoupled from the rest of particle’s dynamics, is noncanoni-
cal and nonfibered. On the other hand, Maxwell’s equations,
which are needed to complete a kinetic system, are first only
defined in the fibered laboratory phase space coordinate sys-
tem. The pullback transformations are needed to connect the
distribution functions in the gyrocenter coordinates and Max-
well’s equations in the laboratory phase space coordinates. In
order to gain a systematic understanding of the mathematical
construction and physical implications of the pullback trans-
formations, a geometric~coordinate independent! viewpoint
has been for the moment integrals originally defined in the
laboratory phase space coordinate system. The moment inte-
grals in kinetic theories are geometrically interpreted as in-
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tegrals of 3-forms over a 3-subset of the phase-space. There-
fore, they are independent of the coordinate system used for
the phase space. Starting from their representations in the
laboratory phase space coordinate systems, one can ‘‘pull-
back’’ the distribution functions or the moment forms to ex-
press the moment integrals in an arbitrary new coordinate
system, which can be noncanonical and nonfibered.

This general construction has been applied to the pull-
backs of the guiding center transformation and the gyro-
center transformation. It has been demonstrated that the sys-
tematic treatment of the moment integrals provided by the
pullback transformation is an essential component of the gy-
rokinetic theory itself. Without such a systematic approach,
the gyrokinetic theory is actually incomplete and many im-
portant physics features, such as the gyrokinetic equilibrium
and the compressional Alfve´n wave, cannot be readily recov-
ered. Illustrative examples have been discussed in Secs. III
and IV.
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