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Abstract

Collective processes in intense charged particle beams described self-consistently by the Vlasov—Maxwell equations are
studied using a 3D multispecies nonlinear perturbative particle simulation method. The newly-developed Beam Equilibrium
Stability and Transport (BEST) code has been used to simulate the nonlinear stability properties of intense beam
propagation, surface eigenmodes in a high-intensity beam, and the electron—proton (e—p) two-stream instability observed in
the Proton Storage Ring (PSR). © 2000 Elsevier Science B.V. All rights reserved.

For high-intensity accelerator applications ranging
from spallation neutron sources to heavy ion fusion,
space-charge effects on beam equilibrium, stability
and transport properties become increasingly impor-
tant. To understand these collective processes at high
beam intensities, it is necessary to treat the beam
dynamics self-consistently using the nonlinear
Vlasov—Maxwell equations [1,2]. Recently, the &f
formalism, a low-noise, nonlinear perturbative parti-
cle smulation technique, has been developed for
intense beam applications, and applied to matched-
beam propagation in a periodic focusing field [3,4]
and other related studies. The present Letter reports
recent advances in applying the 6f formalism to
investigate nonlinear collective processes in intense
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charged particle beams. The BEST code [5] de-
scribed here is a newly-developed 3D multispecies
nonlinear perturbative particle simulation code, which
can be applied to a wide range of important collec-
tive processes in intense beams, such as the electron-
ion two-stream interaction in proton storage rings
[6-8] and €electron storage rings [9-11], and periodi-
cally-focused beam propagation [12,13].

The theoretical model employed here is based on
the nonlinear Vlasov—Maxwell equations. We con-
sider a thin, continuous, high-intensity ion beam
(j = b), with characteristic radius r,, propagating in
the z-direction through background electron and ion
components (j = e,i), each of which is described by
a distribution function f,(x,p,t) [6,14,15]. The
charge components propagate in the z-direction with
characteristic axial momentum v, m; 8;c, where V, =
B;c is the average directed axia velocity, and y, =
(11— Bf)~*/? is the relativistic mass factor of a jth
species particle. While the nonlinear 6f formalism
outlined here is readily adapted to the case of a
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periodic applied focusing field, for present purpose
we make use of a smooth-focusing model in which
the applied focusing force is described by

Floe = —ymofix (1)

where x | = x€, + Y&, is the transverse displacement
from the beam axis, and wj; = const. is the effective
applied betatron frequency for transverse oscilla-
tions. Furthermore, in a frame of reference moving
with axia velocity B;c, the motion of a jth species
particle is assumed to be nonrelativistic. The space-
charge intensity is alowed to be arbitrarily large,
subject only to transverse confinement of the beam
ions by the applied focusing force, and the back-
ground electrons are confined in the transverse plane
by the space-charge potential ¢(x,t) produced by
the excession charge. In the electrostatic and magne-
tostatic approximation, we represent the self-electric
and self-magnetic fields as ES= — V(x,t) and B*
= VX A,(x,1)&,. The nonlinear Vlasov—Maxwell
equations in the six-dimensional phase space (x,p)
can be approximated by [6,14]

d J )
a—t+l)'5— [’yjmijjXJ_

v, J
+ei(\7¢— EVLAZ)} 'yp}fj(x,p,t) =0,

(2
and
V= —arLe [dp(x,p.),
i
poa — 47 dPou. f
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In the nonlinear 8f formalism [16,17], we divide
the total distribution function into two parts, f; = f,
+ &f;, where f;, is a known solution to the nonlin-
ear Vlasov—Maxwell Egs. (2) and (3), and the nu-
merical simulation is carried out to determine only
the detailed nonlinear evolution of the perturbed
distribution function &f;. This is accomplished by
advancing the weight function defined by w; =
8f;/f;, together with the particles positions and
momenta. The equations of motion for the particles,

obtained from the characteristics of the nonlinear
Vlasov Eq. (2), are given by

dx;;
T = (’Yj mj) p]ly
dp;; _ ) Ugji
o Mo X g\ V- VLA,
(4)
Here the subscript ‘ji’ labels the ith simulation

particle of the jth species. The weight functions w,
as functions of phase space variables, are carried by
the simulation particles, and the dynamical equations
for w, are easily derived from the definition of w,
and the nonlinear Vlasov Eq. (2). Following some
algebra, we obtain [3-5,16,17]

dw; 1 of, dp;.
I jo ji
— =—(1-w.)—— 8 —
dt ( Wll)fj0 ap ( dt )

dp;; Uzji
8( - ) = ej(v&p — V. SAZ), (5)
where 6¢ = ¢ — ¢, and 6A,=A,— A,,. Here, the
equilibrium  solutions (¢, A, fjo) solve the
steady-state (d/dt=0) Vlasov—Maxwell Egs. (2)
and (3) with d/dz=0and d/90 = 0. A wide variety
of axisymmetric equilibrium solutions to Egs. (2)
and (3) have been investigated in the literature. The
perturbed distribution &f; is obtained through the
weighted Klimontovich representation [1]

N N
SijN_JZV\’jiS(X_in)‘S(p_pji)v (6)

sji=1

where N, is the total number of actual jth species
particles, and N is the total number of simulation
particles for the jth species. Maxwell’s equations are
also expressed in terms of the perturbed fields and
perturbed density according to

Vp=—4m) edn,
j
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where

&n; = fd3p6fj(x,p,t)

'Z X;1),

SJIl

NSJ Izlbzu ji in)' (8)

Here, S(x —x;;) is a shape function distributing
particles on the grids in configuration space.

The nonlinear particle simulations are carried out
by iteratively advancing the particle motions, includ-
ing the weights they carry, according to Egs. (4) and
(5), and updating the fields by solving the perturbed
Maxwell’s Egs. (7) with appropriate boundary condi-
tions at the cylindrical, perfectly conducting wall.
Even though it is a perturbative approach, the &f
method is fully nonlinear and simulates completely
the original nonlinear Vlasov—Maxwell equations.
Compared with conventional particle-in-cell simula-
tions, the noise level in &f simulations is signifi-
cantly reduced. The 6f method can aso be used to
study linear stability properties, provided the factor
(1 —w) in Eq. (5) is approximated by unity, and the
forcing term in Eqg. (4) is replaced by the unper-
turbed force.

Implementation of the 3D multispecies nonlinear
6f simulation method described above is embodied
in the BEST code [16,17]. The code advances the
particle motions using a leap-frog method, and solves
Maxwell’s equations in cylindrical geometry. For
those fast particle motions which require much larger
sampling frequency than the frequency of the mode
being studied, the code uses an adiabatic field pusher
to advance the particles many time steps without
solving for the perturbed fields.

We first present application of the code to a
single-species thermal equilibrium ion beam (j = b)
in a constant focusing field. It is assumed that the
beam is centered inside a cylindrical pipe with per-
fectly conducting wall located at r =r,, and that
equilibrium properties depend only on the radial

coordinate r = (x?+y?)*2. The isotropic thermal
equilibrium distribution function in the phase space
(r,p) is given by [1,14]

foo(r,p)= ——————~
(2mypmyTp)*/?

y exp{ P3 /2ypMy + YoMy @Znr /2 + ep(bo — ByAz) }
Ty
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where fi, is the number density of beam particles at
r =0, and T, = const. is the temperature of the beam
ions in energy units. The equilibrium self-field po-
tentials ¢, and A,, can be determined numerically
from the nonlinear Maxwell’s equations in Eq. (3).
As an example, we examine the nonlinear propaga
tion properties of a heavy ion beam with y, = 1.08,
mass humber A = 133, and normalized space-charge
|nten3|ty wpb/Zywab 0.95. Here, &} =
4rizel/y,m, is the relativistic plasma frequency-
squared on axis (r = 0). A random initial perturba-
tion is introduced into the system, and the beam is
propagated from t=0 to t=12007,;, where 7, =

wgp - The simulation results show that the perturba-
tlons do not grow and the beam propagates quies-
cently over large distance, which agrees with the
nonlinear stability theorem [18] for the choice of
monotonically-decreasing equilibrium  distribution
function in Eq. (9).

As a second example, we study the linear surface
mode for perturbations about a thermal equilibrium
ion beam in the space-charge-dominated regime, with
flat-top density profile. These modes are of practical
interest because they can be destabilized by a two-
stream electron-ion interaction when background
electrons are present [6—8]. The BEST code, operat-
ing in its linear stability mode, has recovered very
well-defined eigenmodes with mode structures and
eigenfrequencies which agree well with theoretical
predications [6]. For the dipole mode with azimuthal
mode number | = 1, the dispersion relation is given
by [6]

~ 2
o=k V 4oy o (10)
2 V2y, rv% ,
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where r, is the radius of the beam edge, and r
location of the conducting wall. In Eq. (10), @

4m i, e2/y,m, istheion plasma frequency- squared
and wpb/\/_yb = wy, has been assumed in the
space-charge-dominated limit. The dependence of
the eigenfrequency on r,, /r,, obtained from the sm-
ulations agree very well with the theoretical predic-
tions of Eq. (10) [17].

In a high-intensity ion beam, the surface mode
described above can be destabilized by the presence
of a background electron population [6—8]. This
instability is basically of the two-stream type, and is
strongest when the ions are relatively cold in the
propagation direction. The directed velocity differ-
ence, V, — V,, between the beam ions and the back-
ground electrons provides the free energy for the
collective modes to grow. The instability observed in
the Proton Storage Ring [7,8] is believed to have this
two-stream characteristic.

We present here simulation results for the elec-
tron—proton two-stream instability with moderate
space—charge intensity corresponding to wpb /
Zybwﬁb = 0.074, vy, =185, and m,/m, = 1,/1836.
The equilibrium distribution functions f;, are chosen
to be therma equilibrium distributions for both
species with T,, /y,myVZ = 3.61 X 10~ °,
T, /veMVZ=586x10"", and f=h,/f,=0.1,
V,=0, and wyz, =0 (stationary electrons). These
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Fig.1. The x-y projection (at fixed value of z) of the perturbed
electrogtatic potential 8¢(x,y,t) a@ wgpt =200 for the perturba-
tions growing from a small initial level.
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Fig.2. Plots of the linear growth rate y = Ima versus k,V,, / wgy,.

system parameters correspond to the typical operat-
ing parameters in the PSR experiment [7,8]. In the
simulations of the e—p instability, we take the back-
ground distribution functions f,,(r,p) to be the bi-
Maxwellian generalization of Eq. (9), with tempera-
ture T, , = const. in the x-y plane, and temperature
T;; = const. in the z-direction. Because the e—p in-
stability is strongest when the beam ions are cold in
the parallel direction [6] (no Landau damping by
parallel kinetic effects), we take T, ;=0and T, =
in the simulations presented in Figs. 1, 2 and 3. The
stabilizing influence of longitudina Landau damping
by paralel ion kinetic effects at increasing values of
Ty /Ty, isillustrated in Fig. 4. Shown in Fig. 1 is
atypical unstable case, where the x—y projection (at
fixed value of z) of the perturbed space-charge
potential 8¢(x,y,t) grows exponentialy with time
during the linear phase of the instability. Clearly, the
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Fig. 3. Linear and nonlinear phases of the electron—proton instabil-
ity.
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Fig.4. The maximum linear growth rate (IMw) ., Of the elec-
tron—proton instability decreases as the longitudinal temperature
of the beam ions increases.

unstable mode is a dipole mode with azimuthal mode
number | = 1[17].

A plot of the instability growth rate y=Imw
versus K,Vy,/wgy,, With other parameters kept con-
stant, is shown in Fig. 2. The k,V,,/ w,, dependence
of the growth rate is qualitatively consistent with the
analytical results obtained for uniform-density beams
[6]. The important physics here is that only for a
certain range of k,V,/wg, can the collective mode
of the beam ions effectively resonate with the elec-
trons and produce instability. Simulation results show
that the value of T,, /T, , has an important effect
on the growth rate. In order to maximize their energy
exchange with the beam ions, the eectrons must
spatialy overlap the region where the eigenmode of
the beam ions is localized (approximately the region
with the largest transverse gradient in ion density),
which requires sufficiently large T,, /T,, . The
electrons are radialy confined by the space-charge
potential of the beam ions, and the perpendicular
electron temperature determines the radial extent of
the electron density profile. The growth rate is there-
fore strongly dependent on T,, /T,, [17]. For the
system parameters listed above, the growth rate y =
0.031wgy, When T, /T, = 0.130, but becomes un-
detectable over 360 wg; when T, , /Ty, = 0.018.

Finaly, for T,, /T, , = 0.130, the simulation re-
sults for the linear and nonlinear phases of the
instability are shown in Fig. 3, where the density

perturbation amplitude én, at one spatia location is
plotted versus wg,t. We see clearly the initial linear
grow phase and the nonlinear saturation of the insta-
bility. For the parameters considered here, the insta-
bility nonlinearly saturates at t ~ 400w, at a nor-
malized amplitude of &n, /N, ~ 0.3%.

In the simulation results for the e—p instability
presented above, we have assumed cold beam ionsin
the longitudinal direction (T, = 0) to maximize the
growth rate of the instability. In general, when the
longitudinal temperature of the beam ions is finite,
Landau damping by parallel ion kinetic effects pro-
vides a mechanism that reduces the growth rate [17].
The decrease in the linear growth rate due to Landau
damping of the unstable modes can be estimated to
be of order k,vrp, , where vy, = 2Ty, /v,m)Y 2.
Shown in Fig. 4 is a plot of the maximum linear
growth rate (Imw),,, versus Ty, /Ty, and ko,
obtained in numerical simulations of the e—p insta-
bility using the BEST code. As evident from the
figure, the growth rate decreases dramatically as
Toy /Ty, and K,qp, increase. When T, is high
enough that K,v,, is comparable to the linear
growth rate for the T, = O case, the mode is stabi-
lized by longitudinal Landau damping by the beam
ions. Because the phase velocity of the mode in the
longitudinal direction is far removed from the elec-
tron velocity distribution, | w/K,| >V, + vre,, We
do not expect the longitudinal electron temperature
to affect significantly the growth rate of the instabil-
ity.

In conclusion, a 3D multispecies nonlinear pertur-
bative particle simulation method has been devel-
oped to study collective processes in intense charged
particle beams described self-consistently by the
Vlasov—Maxwell equations. The simulation results
show that an isotropic thermal equilibrium ion beam
in a constant focusing field is nonlinearly stable and
can propagate quiescently over hundreds of lattice
periods [18]. Introducing a background component of
electrons, a strong €lectron—proton (e—p) two-stream
instability is observed in the smulationswhen T, is
sufficiently small. Several properties of this instabil-
ity have been investigated numerically, and are found
to be in qualitative agreement with theoretical pre-
dictions. Most importantly, the simulations show that
the two-stream instability can be stabilized by a
modest spread in axial momentum of the beam parti-
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cles. Further details will be presented in a related
publication [17].
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