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During the pedestal cycle of H-mode edge plasmas in tokamak experiments, large-amplitude pedestal build-up
and destruction coexist with small-amplitude drift wave turbulence. The pedestal dynamics simultaneously
includes fast time-scale electromagnetic instabilities,long time-scale turbulence-induced transport processes,
and more interestingly the interaction between them. To numerically simulate the pedestal dynamics from first
principles, it is desirable to develop an effective algorithm based on the gyrokinetic theory. However, existing
gyrokinetic theories cannot treat fully nonlinear electromagnetic perturbations with multi-scale-length struc-
tures in spacetime, and therefore do not apply to edge plasmas. A set of generalized gyrokinetic equations valid
for the edge plasmas has been derived. This formalism allowslarge-amplitude, time-dependent background
electromagnetic fields to be developed fully nonlinearly inaddition to small-amplitude, short-wavelength elec-
tromagnetic perturbations. It turns out that the most general gyrokinetic theory can be geometrically formu-
lated. The Poincaré-Cartan-Einstein 1-form on the 7D phase space determines particles’ worldlines in the phase
space, and realizes the momentum integrals in kinetic theory as fiber integrals. The infinitesimal generator of
the gyro-symmetry is then asymptotically constructed as the base for the gyrophase coordinate of the gyro-
center coordinate system. This is accomplished by applyingthe Lie coordinate perturbation method to the
Poincaré-Cartan-Einstein 1-form. General gyrokinetic Vlasov-Maxwell equations are then developed as the
Vlasov-Maxwell equations in the gyrocenter coordinate system, rather than a set of new equations. Because
the general gyrokinetic system developed is geometricallythe same as the Vlasov-Maxwell equations, all the
coordinate-independent properties of the Vlasov-Maxwellequations, such as energy conservation, momentum
conservation, and phase space volume conservation, are automatically carried over to the general gyrokinetic
system. The pullback transformation associated with the coordinate transformation is shown to be an indispens-
able part of the general gyrokinetic Vlasov-Maxwell equations. As an example, the pullback transformation
in the gyrokinetic Poisson equation is explicitly expressed in terms of moments of the gyrocenter distribution
function, with the important gyro-orbit squeezing effect due to the large electric field shearing in the edge and
the full finite Larmour radius effect for short wavelength fluctuations. The familiar “polarization drift density”
in the gyrocenter Poisson equation is replaced by a more general expression.

c© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

To a large extent, the dynamics of edge plasmas in tokamaks determines the overall confinement properties of the
devices. It is necessary to develop a kinetic simulation method that enables large-scale simulations of the edge
dynamics based on first principles. The kinetic equation system that is most analytically and algorithmically
suitable for this purpose is the gyrokinetic equation system [1–25]. The origin of gyrokinetic theory can be
traced back to the early work of extending the Chew-Goldberger-Low theory [26] to higher orders by Frieman,
Davidson, and Langdon [1, 2]. The introduction of guiding-center coordinates by Catto [6] and Littlejohn’s
theory of guiding center using the non-canonical coordinate perturbation method [5, 9, 11] played important
role in the development of gyrokinetic theory. Lee [27] firstrealized that the gyrokinetic Poisson equation is
nontrivially different from the regular Poisson equation.The most important difference is the “polarization
drift density”. Soon, Dubinet al [12] applied Hamiltonian non-canonical perturbation method to the derivation
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of the gyrokinetic equation, followed by Hahm using the Lagrangian non-canonical perturbation method [13].
Subsequently, many aspects [14–22,24,25] of the modern gyrokinetic theory, such as the concept of gyro-center
gauge [22], high frequency gyrokinetics [19, 22], and gyro-center pull-back transformation [21, 24] have been
worked out. However, it is difficult to apply previously derived gyrokinetic system to the edge plasmas due to
the unique features of their dynamics. In the pedestal cyclefor H-modes, there exists a long-term dynamics for
the pedestal build-up when the plasma is heated by neutral beam injections. The exact dynamics of the pedestal
build-up is determined by the short time-scale, nonlinearly saturated microturbulence. The continuous build-up
of pedestal eventually will drive edge localized mode (ELM)unstable [28, 29], which is also short time-scale.
The nonlinearly evolved ELM reduce the height of the pedestal by a large portion and the pedestal starts to
grow again, which marks the beginning of another pedestal cycle. In the present study, we develop a general
gyrokinetic system, where the long-term pedestal dynamicsis described by a time-dependent background, and
the microturbulence and ELMs are described by nonlinear perturbations on the dynamic background. Such a
split between dynamic background and perturbations is alsoconvenient when studying the physics associated
with the electric field in the radial directionEr in the edge. Because the pedestal widthLp is much smaller
than the minor radius, theEr developed is much bigger than that in the core region. Since the pedestal is time-
dependent, so isEr. It is therefore necessary to allow a large background electric field E0(t) to nonlinearly
evolve in the gyrokinetic equation system. The background magnetic fieldB0(t) is allowed to be time-dependent
as well, which will conveniently include the change of magnetic equilibrium during the pedestal cycle or the
ramp-up phase of the toroidal current. In previous gyrokinetic systems, the nonlinear dynamics of the background
electromagnetic field was not treated.

Another important new feature of the present study is that a geometric method is adopted. In its most general
form, gyrokinetic theory is about a symmetry, called gyro-symmetry, for magnetized plasmas. Our objective
is to decouple the gyro-phase dynamics from the rest of particle dynamics by finding the gyro-symmetry. Ob-
viously, this is fundamentally different from the conventional gyrokinetic concept of “averaging out” the “fast
gyro-motion”. This objective is accomplished by asymptotically constructing a good coordinate system, which
is of course a nontrivial task. Indeed, it is almost impossible without using the Lie coordinate perturbation
method [11, 30–32] enabled by the geometric nature of the phase space dynamics. We will develop the gyroki-
netic Vlasov-Maxwell equations as the Vlasov-Maxwell equations in the gyrocenter coordinates, rather than a
new set of equations. Compared with other methods of deriving gyrokinetic equations, the advantage of the geo-
metric approach is that it automatically guarantees the physics described by the gyrokinetic system is the exactly
the same as those contained in the Vlasov-Maxwell equationsin the laboratory coordinates when the gyrokinetic
system is valid, i.e., when the gyro-symmetry exists. Physics is geometry; it does not depend on which coor-
dinate system is used. Therefore all the coordinate-independent properties of the Vlasov-Maxwell equations,
such as energy conservation, momentum conservation and phase space volume conservation, are automatically
satisfied by the gyrokinetic system. The essential component of the geometric gyrokinetic theory that guarantees
the invariance of physics content is the pullback transformation of the distribution function associated with the
coordinate transformation. The importance of the pullbacktransformation can’t be over-emphasized. Without
this vital element, many important physics will be lost in the gyrokinetic theory. As an example, the pullback
transformation in the gyrokinetic Poisson equation is explicitly expressed in terms of moments of the gyrocenter
distribution function, with the important gyro-orbit squeezing effect due to the large electric field shearing in the
edge and the full finite Larmour radius effect for short wavelength fluctuations. Even though all the coordinate
systems are equivalent in describing the physics, the computational complexity for different coordinate systems
are different. In this sense, many physics theories and algorithms of computational physics are quests of good
coordinates. For the gyrokinetic theory and numerical simulation, the good coordinate system is the gyrocenter
coordinate system that explicitly displays the gyro-symmetry as its gyro-phase coordinate.

2 Gyro-symmetry and Lie coordinate perturbation method

The natural geometric object that determines a charged particle’s dynamics in an electromagnetic field is given
by the Poincaré-Cartan-Einstein 1-form

γ = A+ p = (A + v) · dx −
[
v2

2
+ φ

]
dt , (1)
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constructed by taking the only two geometric objects related to the dynamics of charged particles, the momentum
1-form p ≡ (−v2/2,p) and the potential 1-formA ≡ (−φ,A), and then performing the simplest nontrivial
operation, i.e., addition with the right units, to let particles interact with fields. Here, the bold mathematical
symbolsA andp represent thei = 1, 2, 3 components of the 1-formsA andp, dx representsdxi (i = 1, 2, 3),
and(A+v) ·dx is just a shorthand notation for

∑
i=1,2,3(Ai +vi)dx

i.We have normalizedγ bym, A bymc/e,
andφ by m/e. These normalizations will be used thereafter, unless it isexplicitly stated otherwise. Particles’
dynamics is determined by Hamilton’s equation

iτdγ = 0 , (2)

whereτ is a vector field, whose integrals are particles’ worldlineson the 7D phase spaceP (including time). Here
dγ is the exterior derivative ofγ andiτdγ is the inner product betweendγ andτ. Very elegantly, the Poincaré-
Cartan-Einstein 1-formγ also gives the necessary “volume form” needed for the fundamental “velocity integrals”
in kinetic theory. However, this topic is beyond the mathematical sophistication of the present paper. A complete
geometric setting for the gyrokinetic theory can be found inRef. [25].

A symmetry vector fieldη (infinitesimal generator) ofγ is defined to be a vector field that satisfies

Lηγ = ds (3)

for some functions on the phase space, whereLη is the Lie derivative alongη. Vector fieldη generates a 1-
parameter symmetry group forγ. The symmetry forγ that we are interested is an approximate one. It is an exact
symmetry when the electromagnetic fields are constant in spacetime. To demonstrate the basic concept, we first
consider the case of constant magnetic field without electrical field. Because of its simplicity, there are several
symmetries admitted byγ. The gyro-symmetry is the symmetry given by

η = vx

(
1

B

∂

∂x
+

∂

∂vy

)
+ vy

(
1

B

∂

∂y
− ∂

∂vx

)
. (4)

To find out the corresponding invariant, we need Noether’s theorem which links symmetries and invariants.
Here, we cast the theorem in the form of forms. For a symmetry vector fieldη, using Cartan’s formulaLηγ =
d(iηγ) + iηdγ, we have

d(iηγ) + iηdγ = ds . (5)

For the vector fieldτ of a worldline,

d(γ · η) · τ = ds · τ , (6)

which implies thatγ · η − s is an invariant. Applying Noether’s theorem, we can verify that the corresponding
invariant is the magnetic moment

µ =
v2

x + v2
y

2B
, (7)

as expected. The gyro-symmetryη has a rather complicated expression in the Cartesian coordinates(x, y, vx, vy).
It is desirable to construct a new coordinate such thatη is a coordinate base

η =
∂

∂θ
, (8)

whereθ is the gyrophase coordinate. Eq. (4) indicates that the gyro-symmetryη is neither a rotation in the
momentum space, nor a rotation in the configuration space. Therefore,θ is not a momentum coordinate or a
configuration coordinate. It is a phase-space coordinate that depends on particles’ momentum as well as their
spacetime positions.

When the fields are not constant in spacetime, the gyro-symmetry η in Eq. (4) is broken. We therefore seek
an asymptotic symmetry when the spacetime inhomogeneity isweak. First, we construct a non-canonical phase
space coordinate system̄Z = (X̄, ū, w̄, θ̄) such thatγ can be expanded into an asymptotic series

γ = γ̄0 + γ̄1 + γ̄2 + ... , (9)
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whereγ̄1 ∼ εγ̄0, γ̄2 ∼ εγ̄1, andε ≪ 1. By construction,̄γ0 admits the gyro-symmetryη = ∂/∂θ̄, but γ̄1

does not necessarily.̄Z is the called the zeroth order gyrocenter coordinate. Then,a coordinate perturbation
transformationg : Z̄ → Z = g(Z̄) is introduced such that in the new coordinatesZ = (X, u, w, θ), γ1 and/orγ2

admit the gyro-symmetryη = ∂/∂θ. In fact, we will seek a stronger symmetry condition

∂γ/∂θ = 0 ,

which is sufficient forη = ∂/∂θ to satisfy Eq. (3).Z is the called the first and/or second-order gyrocenter
coordinate. The small parameterε measures the weakness of spacetime inhomogeneity of the fields. The coor-
dinate perturbation transformation procedure indicates that the most relaxed conditions for the existence of an
asymptotic gyro-symmetry is

E≡ E0 + E1, B ≡ B0 + B1, (10)

E0 ∼ v × B0

c
, E1 ∼ ε1

v × B0

c
, B1 ∼ ε1 B0, (11)

(
|ρ| ∇E0

E0
,

1

ΩE0

∂E0

∂t

)
∼

(
|ρ| ∇B0

B0
,

1

ΩB0

∂B0

∂t

)
∼ ε0 , (12)

(
|ρ| ∇E1

E1
,

1

ΩE1

∂E1

∂t

)
∼

(
|ρ| ∇B1

B1
,

1

ΩB1

∂B1

∂t

)
∼ 1 , (13)

where the fields were split into two parts.(E0,B0) are the time-dependent background fields with long spacetime
scale length compared with the spacetime gyroradiusρ = (ρ, 1/Ω). The weak spacetime inhomogeneities of
the background fields are measured by the small parameterε0. For edge plasmas, the background electric field is
large. The order ofE0 implies that the potential drop of background field can be comparable to the thermal energy
of the particles,i.e., eE0 · ρ ∼1. (E1,B1) are the perturbation parts with spacetime scale length comparable to
the spacetime gyroradius, and the perturbation amplitude is measured by the small parameterε1. Bothε0 andε1
measure the weak spacetime inhomogeneities of the overall fields. In general, we assumeε ∼ ε0 ∼ ε1.

The coordinate perturbation method we adopt belongs to the class of perturbation techniques generally referred
as the Lie perturbation method [11, 30–32]. A coordinate transformation for the 7D phase spaceP can be
locally represented by a map between two subsets of theR7 space,g : z 7−→ Z = g(z). In the Lie coordinate
perturbation method,g is a continuous group generated by a vector fieldG with g : z 7−→ Z = g(z, ε) and
G = dg/dε|ε=0. Under the coordinate transformationg, γ transforms as a function, i.e., it is pulled-back.

Γ(Z) = g−1∗γ(z) = γ
[
g−1(Z)

]
= γ(Z) − LG(Z)γ(Z) +O(ε2)

= γ(Z) − iG(Z)dγ(Z) − d [γ ·G(Z)] +O(ε2) , (14)

where use has been made of−G = dg−1/dε|ε=0. If γ is an asymptotic series as in Eq. (9), letZ = g1(z, ε) and
we have

Γ(Z) = Γ0(Z) + Γ1(Z) +O(ε2) , (15)

Γ0(Z) = γ0(Z) , (16)

Γ1(Z) = γ1(Z) − iG1(Z)dγ0(Z) − d [γ0 ·G1(Z)] . (17)

A similar procedure can be straightforwardly carried out tothe second order. LetZ=g2(g1(z, ε), δ) andδ ∼ ε2,

Γ2(Z) = γ2(Z) − LG1(Z)γ1(Z) +

(
1

2
L2

G1(Z) − LG2(Z)

)
γ0(Z) , (18)

whereG2 = dg2/dδ|δ=0 .

3 Gyrocenter Coordinates

To construct the zeroth order gyrocenter coordinateZ̄ = (X̄, ū, w̄, θ̄), we first define two vector fields

D(y) ≡ E0(y) × B0(y)

[B0(y)]
2 , b(y) ≡ B0(y)

B0(y)
, (19)
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wherey is a point in the spacetimeM . In addition, we define the following vector fields which alsodepend on
vx, the velocity at another spacetime positionx ∈M ,

u(y,vx)b(y) ≡ [vx − D(y)] · b(y) b(y) , (20)

w(y,vx)c(y,vx) ≡ [vx − D(y)] × b(y) × b(y) , (21)

c(y,vx) · c(y,vx) = 1 , (22)

a(y,vx) ≡ b(y) × c(y,vx) , (23)

ρ(y,vx) ≡ b(y) × [vx(y) − D(y)]

B0(y)
. (24)

Velocity vx(y) has the following partition

vx(y) ≡ D(y) + u(y,vx)b(y) + w(y,vx)c(y,vx) . (25)

The zeroth order gyrocenter coordinate transformation

g0 : z = (x,v, t) 7→ Z̄ = (X̄, ū, w̄, θ̄, t) (26)

is defined by

x ≡ X̄ + ρ(X̄,v) , ū ≡ u(X̄,v) , w̄ ≡ w(X̄,v) , sin θ̄ ≡ −c(X̄) · e1(X̄) , t ≡ t , (27)

wheree1(X̄) is an arbitrary unit vector field in the perpendicular direction, and it can depend ont as well.
Consequently,

v = D(X̄) + ūb(X̄) + w̄c(X̄) . (28)

Substituting Eqs. (27) and (28) into Eq. (1), and expanding terms using the ordering Eqs. (10)-(13), we have

γ = γ̄0 + γ̄1 + O(ε2) , (29)

γ̄0 = (A0 + ūb + D) · dX̄ +
w̄2

2B0
dθ̄ −

(
ū2 + w̄2 +D2

2
+ φ0

)
dt , (30)

γ̄1 =

[
w̄

B0
∇a ·

(
ūb +

w̄c

2

)
+

1

2
ρ · ∇B0 × ρ− w̄

B0
∇D · a + A1(X̄ + ρ)

]
· dX̄

+

[
− w̄3

2B3
0

a · ∇B0 · b+
w̄

B0
A1(X̄ + ρ) · c

]
dθ̄ +

[
1

B0
A1(X̄ + ρ) · a

]
dw̄

−
[
φ1(X̄ + ρ) + ρ · ∂D

∂t
− 1

2
ρ · ∇E0 · ρ−

(
ūb +

w̄c

2

)
· w̄
B0

∂a

∂t

]
dt . (31)

Here, every field is evaluated atZ̄ and can depend ont, and exact terms of the formdα for someα : P → R have
been discarded because their insignificance in Hamilton’s equation (2). It can be easily verified that∂γ̄0/∂θ̄ = 0,
but∂γ̄1/∂θ̄ 6= 0. As discussed before, we now introduce a coordinate perturbation to the zeroth order gyrocenter
coordinates̄Z,

Z = g1(Z̄, ε),
dg1
dε

|ε=0 = G1(Z̄) , (32)

such that∂γ1/∂θ = 0 in the first order gyrocenter coordinatesZ = (X, u, w, θ). Considering the fact that an
arbitrary exact term of the formdα can be added toγ1, we have

γ1(Z) = γ̄1(Z) − iG1(Z)dγ0(Z) + dS1(Z) , (33)
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12 H. Qin, R.H. Cohen, W.M. Nevins, and X.Q. Xu: Gyrokinetic equations

which, withGt = 0, expands into

γ1(Z) =

[
G1X × B0 −G1ub + ∇S1 +

w

B0
∇a ·

(
ub +

wc

2

)
+

1

2
ρ · ∇B0 × ρ

− w

B0
∇D · a + A1(X + ρ)

]
· dX +

[
G1X · b +

∂S1

∂u

]
du+

[
w

B0
G1θ +

∂S1

∂w
+

+
1

B0
A1(X + ρ) · a

]
dw +

[
− w

B0
G1w +

∂S1

∂θ
− w3

2B3
0

a · ∇B0 · b

+
w

B0
A1(X + ρ) · c

]
dθ +

[
− E0 · G1X + uG1u + wG1w +

∂S1

∂t
− φ1(X + ρ)

−ρ · ∂D
∂t

+
1

2
ρ · ∇E0 · ρ+

(
ub +

wc

2

)
· w
B0

∂a

∂t

]
dt . (34)

In Eq. (34), every field is evaluated atZ and can depend ont. Extensive calculations are needed to solve forG1

andS1 from the requirement that∂γ1/∂θ = 0. We list the results without giving the details of the derivation,

G1X = −∂S1

∂u
b +

w2

2B3
0

aa · ∇B0 +
wu

B2
0

(∇a · b) × b− w

B2
0

(∇D · a) × b

+
∇S1 + A1(X + ρ)

B0
× b (35)

G1u =
w2

2B2
0

a · ∇B0 · c +
wu

B0
b · ∇a · b− w

B0
b · ∇D · a −b· [∇S1 + A1(X + ρ)] , (36)

G1w =
B0

w

∂S1

∂θ
− w2

2B2
0

a · ∇B0·b + c · A1(X + ρ) , (37)

G1θ = −B0

w

∂S1

∂w
− 1

w
a · A1(X + ρ) . (38)

The determining equation forS1 is

∂S1

∂t
+

(
E0 × b

B0
+ ub

)
· ∇S1 + E0‖

∂S1

∂u
+B0

∂S1

∂θ
= E0⊥ ·

[
w2

2B3
0

ãa · ∇B0

+
wu

B2
0

(∇a · b) × b − w

B2
0

(∇D · a)×b

]
− w2u

2B2
0

∇B0:c̃a − wu2

B0
b · ∇a · b

+
wu

B0
b · ∇D · a +

w3

2B2
0

a · ∇B0 · b +
w

B0
a·∂D
∂t

+ ψ̃1 −
w2

2B2
0

∇E0:ãa +
uw

B0
a·∂b
∂t

. (39)

www.cpp-journal.org c© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



Contrib. Plasma Phys.46, No. 7-9 (2006) 13

TheG1 andS1 in Eqs. (35)-(39) remove theθ-dependence inγ1, i.e.,

γ (Z) = γ0(Z) + γ1(Z) , (40)

γ0 = (A0 + ub + D) · dX +
w2

2B0
dθ −

(
u2 + w2 +D2

2
+ φ0

)
dt , (41)

γ1(Z) = − w2

2B0
R · dX −H1dt , (42)

H1 = E0 ·
w2

2B3
0

∇B0 +
w2u

4B0
b · ∇ × b + 〈ψ1〉

− w2

4B2
0

(∇ · E0 − bb : ∇E0) −
w2

2B0
R0 , (43)

R ≡ ∇c · a , R0 ≡ −∂c
∂t

· a , (44)

ψ1 ≡ φ1(X + ρ) − E0⊥ × b

B0
· A1(X + ρ) − wc · A1(X + ρ) , (45)

〈α〉 ≡ 1

2π

∫ 2π

0

αdθ , α̃ ≡ α− 〈α〉 . (46)

The perturbation procedure can be carried out to the second order by introducing another coordinate transfor-
mationg2 : g1(Z̄) → Z = g2 ◦ g1(Z̄). For simplicity, we only display the results up toO(ε21).

γ2 = 〈ψ2〉 dt , (47)

ψ2 ≡ 1

2
E0⊥ ·

[(
G

†
1 × B1

)
× b

]
− 1

2
(ub + wc) ·

(
G

†
1 × B1

)
+ E

†
1 · G†

1 (48)

G
†
1 ≡ G1x+

a

B0
G1w +

cw

B0
G1θ , (49)

E
†
1 ≡ −∇φ1 −

∂A1

∂t
−∇〈ψ1〉 . (50)

The corresponding vector fieldG2 for g2 is

G2X = −∂S2

∂u
b +

1

B0
∇S2 × b+

1

2B0

(
G

†
1 × B1

)
× b , (51)

G2u = b · ∇S2 +
1

2
b ·

(
G

†
1 × B1

)
, (52)

G2w =
B0

w

∂S2

∂θ
+

1

2
c ·

(
G

†
1 × B1

)
, (53)

G2θ = −B0

w

∂S2

∂w
+

1

2
a ·

(
G

†
1 × B1

)
, (54)

and the gauge functionS2 satisfies

∂S2

∂t
+

(
E0 × b

B0
+ ub

)
· ∇S1 + E0‖

∂S2

∂u
+B0

∂S2

∂θ
= ψ̃2 . (55)

A particle’s trajectory (worldline) is given by a vector field τ on the phase spaceP which satisfies

iτdγ = 0 . (56)

The gyrocenter motion equation in its conventional form canbe obtained through

dX

dt
=
τX
τt

,
du

dt
=
τu
τt
,
dw

dt
=
τw
τt

,
dθ

dt
=
τθ
τt
. (57)
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After some calculation, we obtain the following explicit expressions up to orderO(ε0) andO(ε21) for gyrocenter
dynamics,

dX

dt
=

B†

b · B†
(u +

µ

2
b · ∇ × b) − b× E†

b ·B†
, (58)

du

dt
=

B† ·E†

B† · b , (59)

dθ

dt
= B0 + R · dX

dt
−R0 +

E0 · ∇B0

B2
0

+
u

2
b · ∇ × b

+
∂

∂µ
〈ψ1 + ψ2〉 −

1

2B0
[∇ ·E0 − bb : ∇E0] (60)

dµ

dt
= 0 , µ ≡ w2

2B0
, (61)

B† ≡ ∇× (A0 + ub + D) , (62)

E† ≡ E0 −∇
[
µB0 +

D2

2
+ 〈ψ1 + ψ2〉

]
− u

∂b

∂t
− ∂D

∂t
. (63)

The modified fieldsB† andE† can be viewed as those generated by a modified potentialA† = (φ†,A†),

φ† ≡ φ0 + µB0 +
D2

2
+ 〈ψ1 + ψ2〉 , (64)

A† ≡ A0 + ub + D , (65)

B† = ∇× A†, E† = −∇φ† − ∂A†

∂t
. (66)

In the right hand sides of Eqs. (58)-(66), every field is evaluated at the gyrocenter coordinateZ and can depend on
t. Note that in Eq. (58) the curvature drift is hidden in the firstterm on the right hand side. The second term is the
Banos drift [33]. The last term is the generalizedE×B drift that contains the gradientB drift along with several
other terms, such as the space-time inhomogeneities ofE0, which also induces cross-B drift. The requirement
∂γ/∂θ = 0 does not uniquely determine the coordinate perturbationG and the gauge functionS, and therefore
the gyrocenter coordinates. There are freedoms in defining the zeroth order gyrocenter coordinates as well. For
example, in Ref. [34], a different definition of the zeroth order gyrocenter coordinates are used, which results
in more terms in the expression forγ̄1. We will call the freedoms in selecting the gyrocenter coordinates gyro-
center gauges. In Eq. (44),R andR0 areθ-independent, even thougha andc areθ-dependent. LetR = (R0,R),
X = (t,X), and∇ = (−∂/∂t,∇). Theγ in Eq. (40) is invariant under the following group of transformation

R −→ R′ + ∇δ(X) , θ −→ θ′ + δ(X) . (67)

Apparently, this is a gauge group associated how the gyrophaseθ is measured. Naturally, an appropriate name
for this gauge would be gyro-gauge.

4 Pullback transformation of the distribution function

Even though theγ in Eq. (40) is gyro-gauge invariant, it does not need to be. Different gyro-center gauges can
be chosen such thatγ is not gyro-gauge invariant. The gyrocenter coordinate system constructed is just a useful
coordinate system for physics, but not the physics itself. It can depend on the gauges (freedoms) we choose,
as long as it is useful. Gyrocenter coordinate system and thegyrokinetic equation are not the total of physics
under investigation. What is gauge invariant is the system of gyrokinetic equation and the gyrokinetic Maxwell
equations. The key element which makes this gyrokinetic system gauge invariant is the pullback transformation
of the distribution function associated with the gyrocenter coordinate system. Kinetic theory deals with particle
distribution functionf, which is a function defined on the phase spaceP , f : P → R. To complete the equation
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system, the familiar density and momentum velocity integrals are needed for Maxwell’s equations atx ∈M .

j(x) =

∫
f(z)v d3v ,

wherej(x) = [−n(x), j(x)] is the spacetime flux andv ≡ [−1,v]. In gyrokinetic theory, however, theX
coordinates in the gyrocenter coordinate system are not coordinates for spacetime. The gyrocenter transformation
g : z 7−→ Z does not preserve the coordinatesx for the spacetimeM . However, no matter which coordinate
system is used, the moment integrals are still defined at eachx. For the new coordinate systemZ to be useful,
it is necessary to know the construction ofj(x) in it. To be specific, the current scenario is that the distribution
functionf is known in the transformed coordinate systemZ asF (Z). GivenF (Z), we need to pull back the
distribution functionF (Z) into f(z),

f(z) = g∗ [F (Z)] = F (g(z)) . (68)

Considering the asymptotic nature of the construction of the gyrocenter transformationg,

g = g2 ◦ g1 ◦ g0 , g0 : z 7−→ Z̄ , g2 ◦ g1 : Z̄ 7−→ Z , (69)

we have the following pull-back transformation

f(z) = g∗F (Z) = g∗0 ◦ g∗1 ◦ g∗2 F (Z) = g∗0F
[
g2(g1(Z̄))

]

= g∗0

[
F (Z̄) +G1 · ∇F (Z̄) +

1

2
(G1 · ∇)

2
F (Z̄) +G2 · ∇F (Z̄) +O(ε3)

]

=

[
F (Z̄) +G1 · ∇F (Z̄) +

1

2
(G1 · ∇)2 F (Z̄) +G2 · ∇F (Z̄)

]

Z̄→g0(z)

+O(ε3) . (70)

In Eq. (70), the pullbacks associated withg1 andg2 are treated perturbatively, consistent with the perturbative
nature ofg1 andg2. However, at this stage there is no asymptotic expansion for the pullback associated withg0,
becauseg0 is not a perturbative coordinate transformation. The importance of the pullback transformation can’t
be over-emphasized. Without this vital element, many important physics will be lost in the gyrokinetic theory.
We will discuss the physics of the pullback transformation in the next section.

5 General gyrokinetic Vlasov-Maxwell equations

After constructing the gyrocenter coordinates and the corresponding pullback transformation, we are ready to cast
the Vlasov-Maxwell equations in the gyrocenter coordinates to obtain the general gyrokinetic Vlasov-Maxwell
equations. The gyrokinetic Vlasov equation is simply the Vlasov equationdf(τ) = 0 in the gyrocenter coordi-
natesZ, which is explicitly

dZj

dt

∂F

∂Zj

= 0 , (0 ≤ j ≤ 6) . (71)

Because

∂

∂θ

(
dZ

dt

)
= 0 , (72)

the gyrokinetic equation can be easily split into two parts

F = 〈F 〉 + F̃ , (73)

∂ 〈F 〉
∂t

+
dX

dt
· ∇X 〈F 〉 +

du

dt

∂ 〈F 〉
∂u

= 0 , (74)

∂F̃

∂t
+
dX

dt
· ∇XF̃ +

du

dt

∂F̃

∂u
+
dθ

dt

∂F̃

∂θ
= 0 , (75)
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wheredX/dt, du/dt, anddθ/dt are given by Eqs. (58)-(60). The gyrokinetic Maxwell’s equation can be written
as

∇2A = 4π
∑

s

qs

∫ [
F (Z̄) +G1 · ∇F (Z̄) +

1

2
(G1 · ∇)

2
F (Z̄) +G2 · ∇F (Z̄)

]

Z̄→g0(z)

v d3v , (76)

∇2φ = −4π
∑

s

qs

∫ [
F (Z̄) +G1 · ∇F (Z̄) +

1

2
(G1 · ∇)

2
F (Z̄) +G2 · ∇F (Z̄)

]

Z̄→g0(z)

d3v . (77)

We emphasize that Eqs. (76) and (77) are not new equations which contain different physics than the original
Maxwell’s equations with moment integrals. The more appropriate name for this equation should be “Maxwell’s
equations with pulled-back distribution from the gyrocenter coordinates”.

The spirit of the general gyrokinetic theory is to decouple the gyro-phase dynamics from the rest of particle
dynamics by finding the gyro-symmetry, instead of “averaging out” the “fast gyro-motion”. This objective is
accomplished by asymptotically constructing a good coordinate system using the Lie coordinate perturbation
method enabled by the geometric nature of the phase space dynamics. The general gyrokinetic Vlasov-Maxwell
equations are not developed as a new set of equations, but rather as the Vlasov-Maxwell equations in the gyro-
center coordinates. Because the general gyrokinetic system developed is geometrically the same as the Vlasov-
Maxwell equations, all the coordinate independent properties of the Vlasov-Maxwell equations, such as energy
conservation, momentum conservation and phase space volume conservation, are automatically carried over to
the general gyrokinetic system.

The gyrophase dependentF̃ can be decoupled from the system. LettingF̃ = 0, Eqs. (74), (76), and (77) form
a close system for〈F 〉 andA = (−φ,A). We note thatF̃ = 0 does not imply that̃f = 0. The distribution
functionf in the laboratory coordinates becomes gyrophase dependentthrough the pullback transformation (70)
andG. Indeed, the pullback transformation contains significant amount of important physics.

The most famous example is the “polarization drift density”in the gyrokinetic Poisson equation [12,27], which
has played an important role in the development of gyrokinetic simulation methods using explicit algorithm
[35–42]. It is interesting to note that a term almost the sameexists in the Poisson equation for the implicit
algorithm [43]. However, the interpretation of this term inthe context of implicit algorithm is algorithmic. This
a example of the consistency between elegant theories and efficient algorithms. From the viewpoint of modern
gyrokinetic theory, the “polarization drift density” can be rigorously derived from the first principles in the most
general form. Actually, it is just one of the many terms that appear naturally in the pullback transformation.
To illustrate the importance and the basic feature of the pullback transformation for edge plasmas, we carry out
the pullback transformation in the gyrokinetic Poisson equation up to the first order of the gyrocenter coordinate
perturbation for low frequency, electrostatic physics. Inaddition, we will take a sub-ordering for edge plasmas to
keep only the weak inhomogeneities associated withE0 in the pullback transformation. Under these assumptions,
the gauge functionS1 can be solved for as

S1 =
w

B3
0

E · (∇D · c) × b− wu

B2
0

b · ∇D · c +

∫
φ̃1dθ +

w2

4B2
0

∇D · ac , (78)

from which we can calculate the first order pullback transformationG1 ·∇F (Z) .After some detailed calculation,
the Poisson equation (in unnormalized units) can be reducedto

∇2φ(x) = −4π
∑

s

qs [N +Nφ0
+Nφ1

] , (79)

N(x) ≡
∫

2πw dwdu I0 (ρ∇⊥)F (x, w, u) , (80)

Nφ0
(x) ≡ 1

Ω2
0

(e1e1 + e2e2) : ∇
[
n(x)

(
D + V‖(x)b

)
· ∇D

]
, (81)
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Nφ1
(x) ≡ − q

m
φ1(x)

∞∑

i=1

2i

(i!)
2

(∇2
⊥

4Ω2
0

)i

M2i−2(x) (82)

+
q

m

∞∑

i,j=0

2 (i+ j)

(i!j!)2

(∇2
⊥

4Ω2
0

)i
[
M2(i+j)−2(x)

(∇2
⊥

4Ω2
0

)j

φ1(x)

]
,

I0 (ρ∇⊥) ≡
∞∑

i=0

1

(i!)
2

(∇2
⊥w

2

4Ω2
0

)i

, Ω0 ≡ qB0

mc
, (83)

n(x) ≡
∫

2πwdwdu F (x, w, u) , (84)

V‖(x) ≡ 1

n(x)

∫
2πwdwduF (x, w, u) , (85)

Mi(x) ≡
∫

2πwdwduwiF (x, w, u) . (86)

Here,e1 ande2 are two perpendicular directions;n(x), V‖(x), andMn(x) are moments calculated fromF (Z),
which is the total distribution function. All quantities are evaluated at particle coordinatesx. Obviously,Nφ0

(x)
is the leading order pullback associated with the inhomogeneities of the background electric field, which capture
the important physics of gyro-orbit squeezing effect due tothe largeEr shearing in the edge region.Nφ1

(x) is
pullback associated with the short wavelength small amplitude fluctuation. When the scale-length ofφ1 is bigger
than the gyroradius, it is valid to keep the leading order of these terms,

Nφ1
(x) ≡ q

mΩ2
0

(
∇⊥n · ∇⊥φ1 + n∇2

⊥φ1

)
+O

(
ρ4∇4

⊥

)
=

q

mΩ2
0

∇⊥ · (n∇⊥φ1) +O
(
ρ4∇4

⊥

)
, (87)

which is the “polarization drift density”. When the scale-length ofφ1 is comparable to the gyroradius, which
is often the case for edge plasmas, all the terms on the right hand side of Eq. (82) need to be kept for the finite
Larmour radius effect. The “polarization drift density” should be replaced by the more general expression in
Eq. (82), systematically derived from the pullback transformation. Sosenkoet al [23] discussed the possibility of
including the polarization drift due toφ1 in the gyrocenter dynamics rather than in the Poisson equation.

If we ignore the spatial variation of the momentsMn(x) associated with the total distribution functionF (Z),
the expression forNφ1

can be simplified into

Nφ1
(x) =

q

m

∞∑

i,j=0

2 (i+ j)

(i!j!)
2 M2(i+j)−2(x)

( ∇2
⊥

4Ω2
0

)i+j

φ1(x) (88)

=

[
−2π

∫
∂F

∂w
I2
0 (ρ∇⊥) dwdu − 2π

∫
F [w = 0]du

]
q

m
φ1(x) .

If we further assumeF is Maxwellian in the transverse direction,

F = n

(
1√
2πvt

)2

exp

(
− w2

2v2
t

)
F‖(u) (89)

with
∫ +∞

−∞

F‖(u)du = 1 , (90)

then

Nφ1
(x) =

qn

mv2
t

[
e−bI0(b) − 1

]
φ1(x) , (91)

b ≡ v2
t∇2

⊥

Ω2
0

. (92)
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Finally, we need to separate the long wavelength, large amplitude component ofN(x) from the short wave-
length, small amplitude component,

N (x) = N0 (x) +N1 (x) , (93)

whereN0 (x) is the long wavelength, large amplitude component andN1 (x) is the short wavelength, small
amplitude component. The gyrokinetic Poisson equation is then split into

∇2φ0(x) = −4π
∑

s

qsN0 , (94)

∇2φ1(x) = −4π
∑

s

qs [N1 +Nφ0
+Nφ1

] . (95)

The pullback transformation in Ampere’s law is equally important. Many more physics, which were previously
thought to be incompatible with the gyrokinetic theory, have been included into the gyrokinetic theory by applying
the pullback transformation. For example, it has been shownthat gyrokinetic theory can describe all the plasma
waves in magnetized plasmas, including the high frequency cyclotron waves and compressional Alfvén wave
[22].
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