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The susceptibility tensor of a hot, magnetized plasma is conventionally expressed in terms of infinite
sums of products of Bessel functions. For applications where the particle’s gyroradius is larger than
the wavelength, such as alpha particle dynamics interacting with lower-hybrid waves, and the
focusing of charged particle beams using a solenoidal field, the infinite sums converge slowly. In
this paper, a new derivation of the plasma susceptibility tensor is presented which exploits a
symmetry in the particle’s orbit to simplify the integration along the unperturbed trajectories. As a
consequence, the infinite sums appearing in the conventional expression are replaced by definite
double integrals over one gyroperiod, and the cyclotron resonances of all orders are captured by a
single term. Furthermore, the double integrals can be carried out and expressed in terms of Bessel
functions of complex order, in agreement with expressions deduced previously using the Newburger
sum rule. From this new formulation, it is straightforward to derive the asymptotic form of the full
hot plasma susceptibility tensor for a gyrotropic but otherwise arbitrary plasma distribution in the
large gyroradius limit. These results are of more general importance in the numerical evaluation of
the plasma susceptibility tensor. Instead of using the infinite sums occurring in the conventional
expression, it is only necessary to evaluate the Bessel functions once according to the new
expression, which has significant advantages, especially when the particle’s gyroradius is large and
the conventional infinite sums converge slowly. Depending on the size of the gyroradius, the
computational saving enabled by this representation can be several orders-of-magnitude. © 2007
American Institute of Physics. �DOI: 10.1063/1.2769968�

I. INTRODUCTION

The susceptibility tensor � of a hot, uniform, magnetized
plasma is conventionally expressed1 in terms of infinite sums
of products of Bessel functions, i.e.,
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All symbols in Eqs. �1� and �2� have their usual meaning as
defined in Ref. 1, i.e., f0�p� , p�� is the particle distribution
function with normalization 2��−�

� dp��0
�dp�p�f0�p� , p��=1;

� is the �complex� oscillation frequency with Im ��0 cor-
responding to temporal growth; k=k�+k�e� is the wave vec-
tor of the perturbations; B=Be� is the uniform applied mag-
netic field; �=qB /mc is the gyrofrequency, where q and m
are the particle charge and mass, respectively, and c is the
speed of light in vacuo; and �p= �4�n0q2 /m�1/2, where n0 is
the number density. In addition, Jn�z� is the Bessel function
of the first kind of order n, and Jn� denotes �d /dz�Jn�z�.

The infinite sums in Eq. �1� converge with a reasonable
speed for small gyroradius, i.e., �z��1. However, there are
applications where the gyroradius is comparable to or larger
than the wavelength. One well-known example involves al-
pha particle dynamics interacting with lower-hybrid
waves.2–8 Alpha particle dynamics plays an important role in
the process of lower-hybrid current drive9 and heating for
burning plasmas. In this application, the gyroradius of the
alpha particles is typically much larger than the wavelength
of the lower-hybrid waves. Another example can be found in
the focusing of charged particle beams by a solenoidal field
in particle accelerators10 and ion-beam-driven high energy
density physics experimental devices.11 In these systems, the
gyroradius of the charged particles is comparable to the
transverse size of the system, and larger than the wavelength
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of collective excitations with transverse mode numbers
larger than one. For these applications with �z��1, it is not
practical to use Eq. �1� to calculate the plasma susceptibility.
This is because the infinite sums in Eq. �1� converge slowly
for large z, which can be easily seen from the asymptotic
form of Jn�z� for large z,
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Equation �5� implies

Jn+1
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for large z and n. Fortunately, this difficulty can be avoided
by using the following surprising new sum rule �this is sur-
prising considering the fact that Bessel functions had been
extensively studied for three centuries and by the most tal-
ented mathematical minds� for products of Bessel functions
discovered by Newberger in 198212
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Every infinite sum in Eqs. �1� and �2� can be reduced to a
single term using Eq. �6� and its variations, as indicated pre-
viously by Swanson.13

In the standard derivation of the plasma susceptibility,1

the infinite sums in Eq. �1� are brought into the calculation
by adopting the expansion

exp�iz sin 	� = 

n=−�

�

exp�in	�Jn�z� �7�

for the purpose of carrying out the orbit integral along the
unperturbed trajectories. According to Stix,1 this technique
was first introduced by Montgomery and Tidman.14 How-
ever, if every infinite sum in the final expression for the
susceptibility defined in Eq. �1� can be reduced to a single
term, then the expansion in Eq. �7� may not be necessary
after all, and an alternate approach may lead directly to the
more compact form for the plasma dielectric tensor. In this
paper, we show that this is indeed the case. We give a new
derivation and a new expression for the plasma susceptibility
without using infinite sums and Newberger’s sum rule.

This new result is fundamentally due to a symmetry in
the particle’s orbit that can be exploited to simplify the inte-
gration along the unperturbed trajectories. This simplification
replaces the necessity of using Eq. �7�. A similar technique
was used by Weiss to derive the plasma susceptibility for
magnetized plasmas with an isotropic velocity distribution.15

The derivation given in the present paper is for general an-
isotropic velocity distribution function, which is critical for
many important applications to laboratory and space plas-

mas. A detailed comparison between our method and results
with those of Ref. 15 will be given in Sec. III. The paper is
organized as follows: In Sec. II, we describe the symmetry
that simplifies the integration along unperturbed trajectories.
In Sec. III, the derivation of the plasma susceptibility without
using infinite sums is presented. As a simple but important
application of the new result, the asymptotic form of the full
hot plasma susceptibility for large z, is calculated for the first
time for non-Maxwellian particle velocity distributions that
are gyrotropic but otherwise arbitrary.

II. SYMMETRY IN INTEGRATION ALONG
UNPERTURBED TRAJECTORIES

For the linearized Vlasov-Maxwell equations in a con-
stant magnetic field B=Bez=Be�, the perturbed distribution
function is obtained by integrating along the unperturbed
orbits,1
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0
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 , �10�

�k � � − k�v� , �11�

where k=k�e� +k� cos �ex+k� sin �ey, and Im ��0. With-
out loss of generality, we choose �=0. The cases for ��0
can be obtained easily by a rotation.1 When �=0, the three
terms in the orbit integral in Eq. �8� can be reduced to a
single term by means of the following equations:

g�	,z� � �
0

�

exp�− iz sin�	 + �
� + i�k
�d


=
1

�
�

0

�

exp�− iz sin�	 + s� + ias�ds , �12�

s � �
, a �
�k

�
=

� − k�v�

�
, �13�
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In terms of g�	 ,z�, the perturbed distribution function
can be expressed as
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The standard approach in completing the orbit integral in Eq.
�12� is to use Eq. �7� to expand it into an infinite sum of
Bessel functions, and the resulting plasma susceptibility is
given by Eq. �1�. Here, we adopt a different approach by
exploiting an important symmetry in Eq. �12�. The symmetry
of interest is the discrete symmetry associated with the defi-
nition of gyrophase 	, i.e.,

g�	,z� = g�	 + 2�,z� . �17�
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There are two advantages of Eq. �19�, compared with its
conventional form using the infinite sum of Bessel functions.
First of all, Eq. �19� replaces the infinite sum by a definite
integral over one gyroperiod, whose numerical calculation
can be much more efficient. Second, Eq. �19� explicitly dis-
plays the cyclotron resonances of all orders by the sin �a
term in the denominator of c0. The resonance condition is

sin �a = 0, or equivalently � − k�v� = n� , �21�

where n is an integer.

III. SUSCEPTIBILITY WITHOUT INFINITE SUMS
AND THE ASYMPTOTIC FORM FOR LARGE z

To calculate the susceptibility, we need to take the ve-
locity moment of f1 to obtain the perturbed current in terms
of the perturbed electric field. Some algebraic manipulation
gives

j � −
i�

4�
� · E

= q� p�dp�dp�d	�v�e� + v� cos 	ex + v� sin 	ey�f1

= jxex + jyey + j�e� , �22�

where

jx = − ei�k·r−�t�q22�� p�dp�dp�v��ExUG33 + EyUG32

+ E�� �f0

�p�

G31 − VG33	� , �23�

jy = − ei�k·r−�t�q22�� p�dp�dp�v��ExUG23 + EyUG22

+ E�� �f0

�p�

G21 − VG23	� , �24�

j� = − ei�k·r−�t�q22�� p�dp�dp�v��ExUG13 + EyUG12

+ E�� �f0

�p�

G11 − VG13	� , �25�

and

Gij �
1

2�
�

0

2�

d	eiz sin 	
g i

�g

�z

i

z

�g

�	

g sin 	 i
�g

�z
sin 	

i

z

�g

�	
sin 	

g cos 	 i
�g

�z
cos 	

i

z

�g

�	
cos 	

� . �26�

092103-3 A new derivation of the plasma susceptibility tensor… Phys. Plasmas 14, 092103 �2007�

Downloaded 05 Sep 2007 to 198.35.1.65. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



The susceptibility tensor � can therefore be expressed as

� =
2��p

2

��
� p�dp�dp�S , �27�

S � − i�
p�UG33 p�UG32

�f0

�p�

p�G31 − p�VG33

p�UG23 p�UG22
�f0

�p�

p�G21 − p�VG23

p�UG13 p�UG12
�f0

�p�

p�G11 − p�VG13
� .

�28�

The susceptibility � given by Eq. �27� is expressed in terms
of double definite integrals over one gyroperiod of the form
�0

2�d�0
2�d	¯, whereas the conventional result is expressed

in terms of infinite sums of products of Bessel functions.
Obviously, Eq. �27� is preferable for the purpose of numeri-

cal calculation, especially in circumstances where the infinite
sums in Eq. �1� converge slowly for large z.

It turns out that the double integrals of the form
�0

2�d�0
2�d	¯ in every element of G can be carried out

using the familiar integral representation of a single Bessel
function,
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where m is an integer, and the following less familiar but
famous integral representation of the products of Bessel
functions due to Cauchy,16
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For example, it follows that
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where a= ��−k�v�� /� and z=k�v� /�. Detailed calculations of all the other elements of G are given in the Appendix. The
final result is
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The dependence on V in the last column of S in Eq. �28�
can be factored out to give a compact expression for the
plasma susceptibility, i.e.,
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To evaluate the plasma susceptibility according to Eqs. �34�
and �35�, it is only necessary to evaluate the Bessel function
factors once, whereas the infinite sums of products of Bessel
functions are needed to be calculated if using the conven-
tional expression in Eq. �1�. Equations �1� and �35� are par-
ticularly advantageous when �z��1 and the infinite sums
converge slowly. Depending on the value of z, the computa-
tional savings enabled by using this representation can be
several orders-of-magnitude.

As discussed in Sec. I, Weiss15 used a somewhat similar
method to calculate the plasma susceptibility for isotropic
velocity distributions. In Ref. 15, a solution of the Vlasov
equation is guessed without integration along unperturbed
orbits. By contrast, the method we have adopted is to start
from an integration along unperturbed orbits and reduce the
integration to one gyroperiod by utilizing a symmetry intrin-

sic to the orbits of the particles. Obviously, this method is
more systematic and transparent. In addition, the susceptibil-
ity tensor in Ref. 15 is expressed in terms of polarized com-
ponents, whereas our results are expressed in conventional
Cartesian coordinates, which can be easily compared with
the conventional form using infinite sums of Bessel func-
tions.

To demonstrate a simple but important application of the
result given in Eq. �34�, we calculate the asymptotic form of
the plasma susceptibility for �z�→�. It is only necessary to
determine the asymptotic form of T for large z, which can be
easily calculated from the asymptotic form of Ja�z� displayed
in Eq. �5�. We obtain
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and
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sin �a
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What is retained in Eq. �36� are the two leading orders of
magnetic field effects for particles with large gyroradius. Ob-
viously, this result is not accessible from the conventional
expression for � in Eq. �1� using infinite sums.

IV. CONCLUSIONS AND FUTURE WORK

We have shown that the susceptibility � of a hot, mag-
netized plasma can be derived without using infinite sums of
Bessel functions. The infinite sums appearing in the conven-
tional expression for � are replaced by definite double

integrals over one gyroperiod. Furthermore, the double inte-
grals can be carried out and expressed in terms of Bessel
functions of complex order. These results are of importance
for the numerical evaluation of the plasma susceptibility ten-
sor. Instead of using the infinite sums over Bessel functions
according to the conventional expression in Eq. �1�, it is only
necessary to evaluate the Bessel functions once according to
the new result given in Eq. �34�. For applications with large
z, such as alpha-particle dynamics interacting with low-
hybrid waves, and the focusing of charged particle beams
using a solenoidal magnetic field, the infinite sums in Eq. �1�
converge slowly, and the new results in Eqs. �27�–�34� obvi-
ously have significant advantages. From Eq. �34�, it is
straightforward to derive the asymptotic form for the plasma
susceptibility for large z, which is not accessible from the
conventional representation of � in terms of infinite sums of
products of Bessel functions. Previous treatments of the large
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k�� asymptotic limit were focused on electrostatic waves for
thermal distributions of particles.13,17,18

The basic technique developed in this paper may be ap-
plicable to other plasma physics problems as well. In particu-
lar, we expect that calculations in gyrokinetic theory for gen-
eral plasma waves19–21 can be significantly simplified using
similar methods.
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APPENDIX: CALCULATION OF THE G MATRIX

The double integral over �0
2�d	�0

2�d¯ for every ele-
ment of G can be carried out and expressed in terms of
Bessel functions. For example, G11 is given by Eq. �31�. All
the other elements of G can be calculated by using similar
methods. Some straightforward algebra gives
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and

G13 =
i

z

1

2�
�

0

2�

d	
�g

�	
eiz sin 	

=
1

2�
�

0

2�

d	g cos 	eiz sin 	 = G31. �A4�

To calculate G23, G32, G22, G33 we make use of the following
simple variations of Eq. �29�:

J0��x� =
i

2�
�

0

2�

d� exp�ix sin ��sin �

=
i

2�
�

0

2�

d� exp�ix cos ��cos � , �A5�

J0��x� =
− 1

2�
�

0

2�

d� exp�ix sin ��sin2 �

=
− 1

2�
�

0

2�

d� exp�ix cos ��cos2 � , �A6�

and

J0 = J0�2z sin


2
	, J0� +

J0�

2z sin� � 2� + J0 = 0, �A7�

�J0

�z
= J0�2 sin�

2
	 , �A8�

�2J0

�z2 = J0�4 sin2�

2
	 , �A9�

�J0

�
= J0�z cos�

2
	 , �A10�

�2J0

�2 = J0�z
2 cos2�

2
	 − J0�

z

2
sin�

2
	 , �A11�

J0� sin2 

2
=

1

4

�2J0

�z2 , �A12�

J0� cos2 

2
=

1

z2

�2J0

�2 +
1

4z

�J0

�z
, �A13�

�2J0

�z�
= J0�2z sin�

2
	cos�

2
	 +

�J0

�

1

z
. �A14�

In Eqs. �A7�–�A14� and in the subsequent analysis, the argu-
ment of J0 is 2z sin�� 2 �. For the elements of G23, G32, G22,
and G33, we obtain

G23 =
c0

2�
�

0

2�

d	
1

2�
�

0

2�

d exp�− iz sin�	 + � + ia + iz sin 	�cos�	 + �sin 	

=
c0

2�
�

0

2�

deia− 1

2�
�

0

2�

d� exp�2iz sin�−


2
	cos ��sin�

2
	cos�

2
	

=
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2�
�

0

2�

deia�− 1�J0 sin�

2
	cos�

2
	 =
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2�
�

0

2�

deia 1

2z

�2J0

�z�
=

1

2z�

�a

sin �a

�

�z
�J−a�z�Ja�z�� =

a

z
G21, �A15�

G32 =
c0

2�
�

0

2�

d	
1

2�
�

0

2�

d exp�− iz sin�	 + � + ia + iz sin 	�sin�	 + �cos 	

=
c0

2�
�

0

2�

deia− 1

2�
�

0

2�

d� exp�2iz sin�−


2
	cos ��sin�

2
	cos�

2
	 = − G23, �A16�

G22 =
c0

2�
�

0

2�

d	
1

2�
�

0

2�

d exp�− iz sin�	 + � + ia + iz sin 	�sin�	 + �sin 	

=
c0

2�
�

0

2�

deia− 1

2�
�

0

2�
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2
	cos ���1 +

1

2
cos  +

1

2
cos 2� − 2 cos2 ��
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c0

2�
�

0

2�
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2�
�

0

2�

d� exp�2iz sin�−


2
	cos ���− 2 cos2 ��
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= G11 + G33 +
c0

2�
�

0

2�

deia2J0� = G11 + G33 +
2c0

2�
�

0

2�
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4
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1

z2

�2J0

�2 +
1

4z

�J0

�z
�

= G11 + G33 + 2c0
1

4
� �2

�z2 +
1

z

�

�z
��eia�J−a�z�Ja�z�� +

1

z2

2c0

2�
�

0

2�

deia�2J0

�2 =
i

�
� �

sin �a
J−a� �z�Ja��z� +

a

z2� , �A17�

and

G33 =
c0

2�
�

0

2�

d	
1

2�
�

0
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d exp�− iz sin�	 + � + ia + iz sin 	�cos�	 + �cos 	

=
c0
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�
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2
	�

=
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�

0

2�

deia�− J0��2z sin�

2
	� − J0�2z sin�− 

2
	�sin2�

2
	�

=
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2�
�

0
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1
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a
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z
G31. �A18�
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