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It turns out that gyrokinetic theory can be geometrically formulated as a special case of a
geometrically generalized Vlasov-Maxwell system. It is proposed that the phase space of the
space-time is a seven-dimensional fiber bundle P over the four-dimensional space-time M, and that
a Poincaré-Cartan-Einstein 1-form � on the seven-dimensional phase space determines a particle’s
worldline in the phase space. Through Liouville 6-form � and fiber integral, the 1-form � also
uniquely defines a geometrically generalized Vlasov-Maxwell system as a field theory for the
collective electromagnetic field. The geometric gyrokinetic theory is then developed as a special
case of the geometrically generalized Vlasov-Maxwell system. In its most general form, gyrokinetic
theory is about a symmetry, called gyrosymmetry, for magnetized plasmas, and the 1-form � again
uniquely defines the gyrosymmetry. The objective is to decouple the gyrophase dynamics from the
rest of the particle dynamics by finding the gyrosymmetry in �. Compared to other methods of
deriving the gyrokinetic equations, the advantage of the geometric approach is that it allows any
approximation based on mathematical simplification or physical intuition to be made at the 1-form
level, and yet the field theories still have the desirable exact conservation properties, such as phase
space volume conservation and energy-momentum conservation if the 1-form does not depend on
the space-time coordinate explicitly. A set of generalized gyrokinetic equations valid for the edge
plasmas is then derived using this geometric method. This formalism allows large-amplitude,
time-dependent background electromagnetic fields to be developed fully nonlinearly in addition to
small-amplitude, short-wavelength electromagnetic perturbations. The fact that we adopted the
geometric method in the present study does not necessarily imply that the major results reported
here cannot be achieved using classical methods. What the geometric method offers is a systematic
treatment and simplified calculations. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2472596�

I. INTRODUCTION

The kinetic equation system that is most analytically and
algorithmically suitable for studying the dynamics of edge
plasma in magnetic fusion devices is the gyrokinetic equa-
tion system.1–30 The origin of gyrokinetic theory can be
traced back to the early work of extending the Chew-
Goldberger-Low theory31 to higher orders by Frieman,
Davidson, and Langdon.1,2 The introduction of guiding-
center coordinates by Catto5 and the Lie perturbation meth-
ods by Cary32,33 and Littlejohn34 played an important role in
the development of gyrokinetic theory. Littlejohn developed
the theory of a guiding center using the noncanonical coor-
dinate perturbation method.6,9,11,12 Lee35 first realized that the
gyrokinetic Poisson equation is nontrivially different from
the regular Poisson equation. The most important difference
is the “polarization drift density,” which surprisingly has ex-
actly the same form as an “extra” term discovered early by
Friedman et al.36 in the Poisson equation for implicit
schemes under different context and motivation. Soon, Du-
bin et al.13 applied the Hamiltonian Lie perturbation method
to the derivation of the gyrokinetic equation. The Lagrangian

Lie perturbation method suitable for plasma kinetic theories
using guiding center coordinates was introduced by
Littlejohn14 and Boghosian.37 Hahm15,18 and Brizard16 used
the Lagrangian noncanonical perturbation method in their
derivation of gyrokinetic equations. Subsequently, many
aspects17,19–26,28,29 of the modern gyrokinetic theory, such as
the concept of gyrocenter gauge,24 high frequency
gyrokinetics,21,24 and gyrocenter pullback transformation23,28

have been worked out. The variational gyrokinetic formal-
isms were developed by Sugama25 and Brizard,26 and similar
work was previously done by Similon38 and Boghosian.37

The terminology of “gyrokinetic field theory” was first intro-
duced by Sugama.25 Gyrokinetic theory has become the
foundation for modern large scale computer simulation stud-
ies of tokamak physics.35,36,39–48 However, it is difficult to
apply previously derived gyrokinetic system to the edge
plasmas due to the unique features of their dynamics. In the
pedestal cycle for H-modes, there exists a long-term dynam-
ics for the pedestal buildup when the plasma is heated by
neutral beam injections. The exact dynamics of the pedestal
buildup is determined by the short time scale, nonlinearly
saturated microturbulence. The continuous buildup of the
pedestal eventually will drive the edge localized mode
�ELM� unstable,49,50 which is also the short time scale. The
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nonlinearly evolved ELM reduce the height of the pedestal
by a large portion and the pedestal starts to grow again,
which marks the beginning of another pedestal cycle. In the
present study, we develop a general gyrokinetic system,
where the long-term pedestal dynamics is described by a
time-dependent background, and the microturbulence and
ELMs are described by nonlinear perturbations on the dy-
namic background. Such a split between dynamic back-
ground and perturbations is also convenient when studying
the physics associated with the electric field in the radial
direction Er in the edge. Because the pedestal width Lp is
much smaller than the minor radius, the Er developed is
much bigger than that in the core region. Since the pedestal
is time-dependent, so is Er. It is therefore necessary to allow
a large background electric field E0�t� to nonlinearly evolve
in the gyrokinetic equation system. The background mag-
netic field B0�t� is allowed to be time-dependent as well,
which will conveniently include the change of magnetic
equilibrium during the pedestal cycle or the ramp-up phase
of the toroidal current. In previous gyrokinetic systems, the
nonlinear dynamics of the background electromagnetic field
was not treated.

The most important new feature of the present study is
that a geometric method is adopted. We first developed a
geometrically generalized Vlasov-Maxwell system which is
valid for any particle-field interaction model and applies to a
wide range of kinetic systems such as gyrokinetic models for
magnetized plasmas and kinetic descriptions for high inten-
sity charged particle beams. We propose that the phase space
of the space-time is a seven-dimensional fiber bundle P over
the four-dimensional space-time M, and that a Poincaré-
Cartan-Einstein 1-form � on the 7D phase space determines
the particles’ worldlines in the phase space. Through the con-
struction of Liouville 6-form � and fiber integral, the 1-form
� also elegantly and uniquely defines the geometrically gen-
eralized Vlasov-Maxwell system as a field theory for the
collective electromagnetic field. The geometric gyrokinetic
theory is then developed as a special case of the geometri-
cally generalized Vlasov-Maxwell system. In its most gen-
eral form, gyrokinetic theory is about a symmetry, called
gyrosymmetry, for magnetized plasmas. Our objective is to
decouple the gyrophase dynamics from the rest of particle
dynamics by finding the gyrosymmetry. Obviously, this is
fundamentally different from the conventional gyrokinetic
concept of “averaging out” the “fast gyromotion.” This ob-
jective is accomplished by asymptotically constructing a
good coordinate system, which is of course a nontrivial task.
The fact that we adopted the geometric method in the present
study does not necessarily imply that the major results re-
ported here cannot be achieved using classical methods.
What the geometric method offers is a systematic treatment
and simplified calculations. Indeed, the perturbative calcula-
tion is greatly simplified by using the Lie coordinate pertur-
bation method11,32,33 enabled by the geometric nature of the
phase space dynamics. Compared to other methods of deriv-
ing the gyrokinetic equations, the advantage of the geometric
approach is that it allows any approximation based on math-
ematical simplification or physical intuition to be made at the
1-form level, and yet the equation system still has the desir-

able exact conservation properties such as phase space vol-
ume conservation and energy-momentum conservation.

II. GEOMETRICALLY GENERALIZED
VLASOV-MAXWELL EQUATIONS

Because it turns out that the geometry of the Vlasov-
Maxwell equations is best manifested in the space-time of
relativity, we will start from the phase space for space-time.
The phase space where the Vlasov-Maxwell equations reside
is a seven-dimensional manifold

P = ��x,p��x � M,p � Tx
*M,g−1�p,p� = − m2c2� , �1�

where M is the four-dimensional space-time, T*M is the
eight-dimensional cotangent bundle of M, and g−1 is the in-
verse of the metric tensor of M defined by

�g−1���g�� = ��
�. �2�

The phase space is a fiber bundle over space-time M �see
Fig. 1�,

�: P → M . �3�

The worldlines of particles on P are determined by a given
Poincaré-Cartan-Einstein 1-form � on P through Hamilton’s
equation

i�d� = 0, �4�

where � is a vector field, whose integrals are the particles’
worldlines on the 7D phase space P �including time�. Here
d� is the exterior derivative of � and i�d� is the inner prod-
uct between d� and �. The collective electromagnetic field is
given by the potential 1-form A �normalized by c /e� on M.
In a Cartesian inertial coordinate system x� ��=0,1 ,2 ,3�,

FIG. 1. Phase space and fiber integral.
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x0 = ct, A0 = − 	, and A = �− 	,A� , �5�

where 	 and A are the scalar and vector potential of the
electromagnetic field. The interaction between particles and
the field is completely determined by the dependence of �
on A.

Very elegantly, the Poincaré-Cartan-Einstein 1-form �
also geometrically defines a field theory for the interaction
between particles and the collective electromagnetic field.
Define the Liouville 6-form � on the 7D phase space P as

� = −
1

3!
d� ∧ d� ∧ d� . �6�

In the 7D phase space, the Liouville theorem of phase space
volume conservation is replaced by

L�� = i�d� + d�i��� = 0, �7�

where L� is the Lie derivative along the vector field � of a
particle’s worldline on P. The geometrically generalized Vla-
sov equation for the particle distribution function f in the
phase space is

L�f = i�df = 0. �8�

A simple but important property for f and � is

L��f�� = �L�f�� + �L���f = 0, �9�

from which we can derive the conservative version of the
Vlasov equation as

d�i�f�� ∧ dt�� = 0. �10�

The dynamics of the collective electromagnetic field A is
described by the classical field theory specified by the action

S = �
x

L , �11�

where the Lagrangian density L is given by

L�x� = −
1

2
dA ∧ * dA + 4��

�−1�x�
f� ∧ � . �12�

Here 	�−1�x� is the fiber integral51 at the point x on the space-
time M �see Fig. 1�, and *� is the Hodge-dual of � on M. We
have normalized � by m, A by mc /e, and 	 by m /e. These
normalizations will be used thereafter, unless it is explicitly
stated otherwise. To be more general, the 1-form � is allowed
to be a nonlocal function on M, �=��g�x��, where g�x� is a
function of x. The field equation for A is obtained through
the variational procedure,

�S

�A
= E�L� = 0, �13�

where �S /�A is the variational derivative and E�L� is the
Euler derivative. Carrying out the variational derivative, we
have

d * dA = 4� * j , �14�

j��x� = �
x�
�

�−1�x��
f� ∧

���g�x���
�A��x�

, �� = 0,1,2,3� , �15�

���g�
�A��x�

= ��x − g�x���
 ���g�
�A��g�

−
�

�x�� ���g�
�A�,��g��
,

��,� = 0,1,2,3� . �16�

Here A�,��x� represents �A��x� /�x�, and it is assumed that �
does not depend on derivatives of A higher than the first
order. When evaluating the 4-current in Eq. �15� by variation
with respect to A�, the term f� is kept fixed. This is because
the action in Eq. �11� has a mixed representation. The field is
Eulerian and the particles are Lagrangian, which is the same
as Low’s first variational principle for the Vlasov-Maxwell
system.52 The action principle given by Eqs. �11�–�13� can
be transformed into pure Eulerian through the reduction as-
sociated with the particle relabeling symmetry. For the cur-
rent purpose of deriving governing equations which adopt
various physical assumptions and mathematical simplifica-
tions, but still possess good conservation properties, the ac-
tion principle given by Eqs. �11�–�13� with mixed represen-
tation is easier to work with. The 4-current j��x� is therefore

j��x� = �
x�
�

�−1�x��
��x − g�x���f� ∧

���g�
�A��g�

−
�

�x���
x�
�

�−1�x��
��x − g�x���f� ∧

���g�
�A�,��g��,

�� = 0,1,2,3� . �17�

The second term in Eq. �17� is the 4-magnetization-current,
whose 0th component is the polarization density. If � is a
local function of x, i.e., g�x�=x, then Eq. �17� reduces to

j��x� = �
�−1�x�

f� ∧
���x�
�A��x�

−
�

�x���
�−1�x�

f� ∧
���x�

�A�,��x��, �� = 0,1,2,3� .

For example, for a classical particle interacting with the
field through the Lorentz force, we can construct � as fol-
lows. First, take the only two geometric objects related to the
dynamics of charged particles, the momentum 1-form p and
the potential 1-form A on M, then perform the only non-
trivial operation, i.e., addition with the right units, to let par-
ticles interact with the fields,

�̂ = A + p . �18�

�̂ is what we call the Poincaré-Cartan-Einstein 1-form on the
space-time M. The Poincaré-Cartan-Einstein 1-form on the
phase space P is obtained by pulling back �̂,

� = �*�̂ . �19�

Equations �15� and �17� reduce to

* j�x� = �
�−1�x�

f� , �20�

which implies that the “velocity integrals” in kinetic theory
are geometrically fiber integrals. The fact that *j�x� is the
conventional 3-form flux can be verified by expressing � in
a coordinate system composed of inertial coordinates x� ��
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=0,1 ,2 ,3� for M and three corresponding coordinates pi

with i=1,2, and 3 for TxM. In this coordinate system we
have the following expressions in the phase space P:

p0 = − �m2c2 + p2, �21�

d� =
e

c
Ai,jdxj ∧ dxi + dpi ∧ dxi − e	,jdxj ∧ dt

− c
�

�pi

�m2c2 + p2dpi ∧ dt , �22�

� = �dx1 ∧ dx2 ∧ dx3 −
p1

m�r
dt ∧ dx2 ∧ dx3

−
p2

m�r
dx1 ∧ dt ∧ dx3

−
p3

m�r
dx1 ∧ dx2 ∧ dt� ∧ dp1 ∧ dp2 ∧ dp3, �23�

where terms in Eq. �23� that vanish upon fiber integration
have been dropped, and

�r =�1 +
p2

m2c2 . �24�

Overall, the Vlasov-Maxwell equations for classical particles
interacting with the field through Lorentz force on the 7D
phase space P can be geometrically written as

df��� = 0,i�d� = 0 and d * dA = 4��
�−1�x�

f� . �25�

As discussed before, the 1-form � in the geometrically
generalized Vlasov-Maxwell system is completely general. It
can take any form based on physical intuition and math-
ematical simplification. For particles interacting with the
field through mechanisms other than Lorentz force, � will
assume to be different from Eq. �19�. For example, a neutron
or a charge-neutral virus interacts with the magnetic field
through their magnetic moments. In the context of the
present study, the particles of interest are the gyrocenters,
whose 1-form is different from Eq. �19�, but was derived
from Eq. �19� under certain approximations and coordinate
transformations. One prominent feature in the 1-form for the
gyrocenter that does not exist in Eq. �19� is the dependence
of � on the derivatives of A, which according to Eq. �17� will
induce a 4-magnetization-current, whose 0th component is a
polarization density term in the Poisson equation. It is indeed
a new revelation that the well-known polarization density in
the gyrokinetic theory is fundamentally the consequence of
the dependence of the gyrocenter 1-form on the field
strength, i.e., the first derivatives of A. In the next section, we
will systematically derive the gyrocenter 1-form.

III. GYROSYMMETRY AND LIE COORDINATE
PERTURBATION METHOD

We start from the Poincaré-Cartan-Einstein 1-form for a
classical, nonrelativistic charged particle interacting with
electromagnetic field through Lorentz force

� = A + p = �A + v� · dx − �v2

2
+ 	�dt . �26�

Here, the bold mathematical symbols A and p represent the
i=1,2 ,3 components of the 1-forms A and p, dx represents
dxi �i=1,2 ,3�, and �A+v� ·dx is just a shorthand notation for
�i=1,2,3�Ai+vi�dxi. Particle dynamics is determined by
Hamilton’s equation �4�.

Gyrokinetic theory is about a symmetry called gyrosym-
metry. A symmetry vector field 
 �infinitesimal generator� of
� is defined to be a vector field that satisfies

L
� = ds �27�

for some function s on the phase space,where L
 is the Lie
derivative along 
. Vector field 
 generates a 1-parameter
symmetry group for �. The symmetry for � that we are in-
terested in is an approximate one. It is an exact symmetry
when the electromagnetic fields are constant in space-time,
and in this case it is given by


 = vx� 1

B

�

�x
+

�

�vy
� + vy� 1

B

�

�y
−

�

�vx
� . �28�

For any symmetry vector field 
, we can apply Cartan’s for-
mula L
�=d�i
��+ i
d� to obtain

d�i
�� + i
d� = ds . �29�

Taking the inner product between the vector field � of a
worldline and Eq. �29� gives

d�� · 
� · � = ds · � , �30�

which implies that � ·
−s is an invariant. This is the well-
known Noether’s theorem which links symmetries and in-
variants. Applying Noether’s theorem, we can verify that the
corresponding invariant is the expected magnetic moment

� =
vx

2 + vy
2

2B
, �31�

as expected. Equation �28� indicates that the gyrosymmetry

 is neither a pure rotation in the momentum space, nor a
pure rotation in the configuration space. It is desirable to
construct a new coordinate such that 
 is a coordinate base


 =
�

��
, �32�

where � is the gyrophase coordinate. When the fields are not
constant in space-time, the gyrosymmetry 
 in Eq. �28� is
broken. We then assume the space-time inhomogeneity is
weak and seek an asymptotic symmetry. To achieve this goal,
we first construct a noncanonical phase space coordinate sys-

tem Z̄= �t , X̄ , ū , w̄ , �̄� where � can be expanded into an
asymptotic series

� = �̄0 + �̄1 + �̄2 + ¯ , �33�

where �̄1���̄0, �̄2���̄1, and ��1. By the construction of

Z̄, �̄0 admits the gyrosymmetry 
=� /��̄, but �̄1 and �̄2 do

not necessarily. Z̄ is therefore called the zeroth order gyro-
center coordinate. Then, a coordinate perturbation transfor-
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mation g : Z̄→Z=g�Z̄� is introduced such that in the new
coordinates Z= �t ,X ,u ,w ,��, �1 and/or �2 admit the gy-
rosymmetry 
=� /��. In the present study, we seek a stron-
ger and sufficient symmetry condition

��/�� = 0.

Naturally, Z is the called the first and/or second-order gyro-
center coordinate. The small parameter � is a measure of the
weakness of space-time inhomogeneity of the fields. The co-
ordinate perturbation procedure itself shows that the most
relaxed conditions for the existence of an asymptotic gy-
rosymmetry is

B � B0 + B1, E � E0 + E1, �34�

B1 � �1B0, E0 �
v 
 B0

c
, E1 � �1

v 
 B0

c
, �35�

����
�B0

B0
,

1

�B0

�B0

�t
� � ����

�E0

E0
,

1

�E0

�E0

�t
� � �0, �36�

����
�B1

B1
,

1

�B1

�B1

�t
� � ����

�E1

E1
,

1

�E1

�E1

�t
� � 1. �37�

Here the fields were split into two parts. The leading order
fields �E0 ,B0� are the time-dependent background fields with
long space-time scale length compared with the space-time
gyroradius �= �� ,1 /��. The small parameter �0 measures
the weak space-time inhomogeneities of the background
fields. For edge plasmas, the background electric field can be
large. The order of E0 implies that the potential drop of the
background field can be comparable to the thermal energy of
the particles, i.e., eE0 ·��1. The next order fields �E1 ,B1�
are the perturbed parts with space-time scale length compa-
rable to the space-time gyroradius. The perturbation ampli-
tude is measured by the small parameter �1. Both �0 and �1

measure the weak space-time inhomogeneities of the overall
fields. In general, we assume ���0��1.

The coordinate perturbation method adopted here be-
longs to the class of perturbation techniques generally re-
ferred to as the Lie perturbation method,11,32,33 where the
coordinate transformation g is a continuous group generated
by a vector field G with g :z�Z=g�z ,�� and G=dg /d���=0.
Under the coordinate transformation g, � is pulled back,

��Z� = g−1*��z� = ��g−1�Z�� = ��Z� − LG�Z���Z� + O��2�

= ��Z� − iG�Z�d��Z� − d�� · G�Z�� + O��2� , �38�

where use has been made of −G=dg−1 /d���=0. In our case, �
is an asymptotic series as in Eq. �33�. Let Z=g1�z ,�� and we
have

��Z� = �0�Z� + �1�Z� + O��2� , �39�

�0�Z� = �0�Z� , �40�

�1�Z� = �1�Z� − iG1�Z�d�0�Z� − d��0 · G1�Z�� . �41�

By using another coordinate transformation, the perturbation
procedure can be straightforwardly carried out to the second

order. Let Z=g2�g1�z ,�� ,�� and ���2. The second order
transformed 1-form is

�2�Z� = �2�Z� − LG1�Z��1�Z� + �1

2
LG1�Z�

2 − LG2�Z���0�Z� ,

�42�

where G2=dg2 /d���=0.

IV. GYROCENTER COORDINATES

In order to construct the zeroth order gyrocenter coordi-

nate Z̄= �t , X̄ , ū , w̄ , �̄�, we first define two vector fields on
space-time M,

D�y� �
E0�y� 
 B0�y�

�B0�y��2 , b�y� �
B0�y�
B0�y�

, �43�

where y�M. To decompose the particles’ velocity at the
gyrocenter, it is necessary to define, at every y, the following
vector fields which also depend on vx, particles’ velocity at
another space-time position x�M,

w�y,vx�c�y,vx� � �vx − D�y�� 
 b�y� 
 b�y� , �44�

c�y,vx� · c�y,vx� = 1, �45�

��y,vx� �
b�y� 
 �vx�y� − D�y��

B0�y�
, �46�

u�y,vx�b�y� � �vx − D�y�� · b�y�b�y� , �47�

a�y,vx� � b�y� 
 c�y,vx� . �48�

With these definitions, velocity vx at x has the following
partition at y:

vx�y� � D�y� + u�y,vx�b�y� + w�y,vx�c�y,vx� . �49�

The zeroth order gyrocenter coordinate transformation

g0: z = �t,x,v� � Z̄ = �X̄, ū,w̄, �̄� �50�

is given by

x � X̄ + ��X̄,v�, ū � u�X̄,v�, w̄ � w�X̄,v� ,

�51�
sin �̄ � − c�X̄� · e1�X̄�, t � t ,
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where e1�X̄� is an arbitrary unit vector field in the perpen-

dicular direction, and it can depend on t as well. Using the Z̄
coordinate, vx can be expressed as

vx = D�X̄� + ūb�X̄� + w̄c�X̄� . �52�

Substituting Eqs. �51� and �52� into Eq. �26�, and expanding
terms using the ordering in Eqs. �34�–�37�, we have

� = �̄0 + �̄1 + O��2� , �53�

�̄0 = �A0 + ūb + D� · dX̄ + �̄d�̄ − � ū2 + w̄2 + D2

2
+ 	0�dt ,

�54�

�̄1 = � w̄

B0
�a · �ūb +

w̄c

2
� +

1

2
� · �B0 
 � −

w̄

B0
�D · a + A1�X̄ + ��� · dX̄ + �−

w̄3

2B0
3a · �B0 · b +

w̄

B0
A1�X̄ + �� · c�d�̄

+ � 1

w̄
A1�X̄ + �� · a�d�̄ − �	1�X̄ + �� + � ·

�D

�t
−

1

2
� · �E0 · � − �ūb +

w̄c

2
� ·

w̄

B0

�a

�t
�dt . �55�

Here, A0 and 	0 are the leading order vector and scalar potentials corresponding to the leading order E0 and B0, �̄

= w̄2 /2B0, and every field is evaluated at Z̄ and can depend on t. Exact terms of the form d� have been discarded because of

their insignificance in Hamilton’s equation �4�. It is obvious that ��̄0 /��̄=0, but ��̄1 /��̄�0. We now introduce a coordinate

perturbation to the zeroth order gyrocenter coordinates Z̄,

Z = g1�Z̄,��, �dg1

d�
�

�=0
= G1�Z̄� , �56�

such that ��1 /��=0 in the first order gyrocenter coordinates Z= �X ,u ,� ,��. Considering the fact that an arbitrary exact term
can be added to �1, we write

�1�Z� = �̄1�Z� − iG1�Z�d�0�Z� + dS1�Z� , �57�

which expands into

�1�Z� = �G1X 
 B† − G1ub + �S1 +
w

B0
�a · �ub +

wc

2
� +

1

2
� · �B0 
 � −

w

B0
�D · a + A1�X + ��� · dX

+ �G1X · b +
�S1

�u
�du + �G1� +

�S1

��
+

1

w
A1�X + �� · a�dw

+ �− G1� +
�S1

��
−

w3

2B0
3a · �B0 · b +

w

B0
A1�X + �� · c�d�

+ �− E† · G1X + uG1u + B0G1� +
�S1

�t
− 	1�X + �� − � ·

�D

�t
+

1

2
� · �E0 · � + �ub +

wc

2
� ·

w

B0

�a

�t
�dt . �58�

In Eq. �58�, we have chosen not to transform the time, i.e., Gt=0. All the other components of G1 and S1 are determined from
the requirement that ��1 /��=0. The results are listed as follows without giving the details of the derivation:

G1X = −
�S1

�u
�b +

B�
†

B�
† � +

w2

2B0
2B�

†aa · �B0 +
wu

B0B�
† ��a · b� 
 b −

w

B0B�
† ��D · a� 
 b +

�S1 + A1�X + ��
B�

† 
 b , �59�

G1u = �B�
† 
 b� · G1X

w2

2B0
2a · �B0 · c +

wu

B0
b · �a · b −

w

B0
b · �D · a − b · ��S1 + A1�X + ��� , �60�

G1� =
�S1

��
−

w2

2B0
3a · �B0 · b +

w

B0
c · A1�X + �� , �61�

G1� = −
�S1

��
−

1

w
a · A1�X + �� . �62�

The determining equation for S1 is
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�S1

�t
+ �E0

† 
 b + B�
† u

B�
† + ub� · �S1 + �E0�

† +
E0�

† · B�
†

B�
† � �S1

�u
+ B0

�S1

��

= �E0�
† − B�

† 
 ub� · � w2

2B0
3aã · �B0 +

wu

B0
2 ��a · b� 
 b −

w

B0
2 ��D · a� 
 b� −

w2u

2B0
2 �B0:cã −

wu2

B0
b · �a · b

+
wu

B0
b · �D · a +

w3

2B0
2a · �B0 · b +

w

B0
a ·

�D

�t
−

w2

2B0
2�E0:aã +

uw

B0
a ·

�b

�t
+ �1

˜. �63�

With G1 and S1 taking the forms in Eqs. �59�–�63�, the
�-dependence in �1 is removed,

��Z� = �0�Z� + �1�Z� , �64�

�0 = �A0 + ub + D� · dX + �d� − �u2 + w2 + D2

2
+ 	0�dt ,

�65�

�1�Z� = − �R · dX − H1dt , �66�

H1 = �E0�
† − B�

† 
 ub� ·
w2

4B0
2B�

†�B0 +
w2u

4B0
b · � 
 b

−
w2

4B0
2 �� · E0 − bb:�E0� −

w2

2B0
R0 + ��1� , �67�

R � �c · a, R0 � −
�c

�t
· a , �68�

�1 � 	1�X + �� − �E0
† 
 b + B�

† u

B�
† + ub + wc� · A1�X + �� ,

�69�

��� �
1

2�
�

0

2�

�d�, �̃ � � − ��� , �70�

	0
† � 	0 + �B0 +

D2

2
, A† � A0 + ub + D , �71�

B† � � 
 A†, B�
† � B† · b , �72�

E0
† � − �	0

† −
�A†

�t
= E0 − ���B0 +

D2

2
� − u

�b

�t
−

�D

�t
. �73�

The perturbation procedure has been carried out to the sec-
ond order by introducing another coordinate transformation

g2: g1�Z̄�→Z=g2 �g1�Z̄�. The results up to O��1
2� are

��Z� = �0�Z� + �1�Z� + �1�Z� , �74�

�2 = − ��2�dt , �75�

�2 �
1

2
E0� · ��G1

† 
 B1� 
 b� −
1

2
�ub + wc� · �G1

† 
 B1�

+
1

2�G1x · E1 + �E1 ·
a

�2�B0

−
���1�
��

�G1�

+ E1 · c�2�

B0
G1�� , �76�

G1
† � G1x + G1�

a
�2�B0

+ G1��2�

B0
c , �77�

E1 � − �	1 −
�A1

�t
. �78�

Given �, a particle’s trajectory �worldline� on the phase
space is uniquely determined by Eq. �4� through its tangent
vector �. The gyrocenter motion equation in terms of Z
= �X ,u ,� ,�� can be obtained through

dX

dt
=

�X

�t
,

du

dt
=

�u

�t
,

dw

dt
=

�w

�t
,

d�

dt
=

��

�t
. �79�

The explicit expressions for gyrocenter dynamics are

dX

dt
=

B†

B�
†�u +

�

2
b · � 
 b� −

b 
 E†

b · B† , �80�

du

dt
=

B† · E†

B�
† , �81�

d�

dt
= B0 + R ·

dX

dt
− R0 +

E0 · �B0

B0
2 +

u

2
b · � 
 b

−
1

2B0
�� · E0 − bb:�E0� +

�

��
��1 + �2� , �82�

d�

dt
= 0, � �

w2

2B0
, �83�

E† � E0
† − ���1 + �2� . �84�

In the right-hand sides of Eqs. �80�–�84�, all the fields are
evaluated at the gyrocenter coordinate Z and can depend on
t. All the terms on the right-hand sides of Eqs. �80�–�84� are
gyrophase independent. The spirit of the general gyrokinetic
theory is to decouple the gyrophase dynamics from the rest
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of the particle dynamics by finding the gyrosymmetry, in-
stead of “averaging out” the “fast gyromotion.” This objec-
tive was accomplished by asymptotically constructing a good
coordinate system using the Lie coordinate perturbation
method enabled by the geometric nature of the phase space
dynamics. Note that in Eq. �80� the usual curvature drift is
hidden in the first term on the right-hand side, and the second
term is the Banõs drift.53 The last term is the generalized E

B drift that contains the usual gradient B drift along with
several other “cross-B” drifts, such as that induced by the
space-time inhomogeneities of E0. Compared with previous
gyrokinetic theories, the time-dependence of the background
magnetic field B0 and the space-time-dependence of the
background E0 field and the associated E
B flow are self-
consistently and systematically included in our analysis.
These factors are treated on equal footing with the spatial
inhomogeneity of the background magnetic field in the per-
turbative procedure. The space-time inhomogeneities associ-
ated with the background E
B flow have important physi-
cal consequences. For example, the large scale length shear
flow can effectively suppress the microturbulence and result
in better transport properties in H-modes. This effect enters
into the gyrokinetic equation system through the spatial de-
rivative of D�E0
B0 /B0

2 in Eq. �73�.
It is necessary to note that there are freedoms in defining

the gyrocenter coordinates. For example, in Ref. 12, a differ-
ent definition of the zeroth order gyrocenter coordinates are
used, which results in more terms in the expression for �̄1. In
addition, the requirement �� /��=0 does not uniquely deter-
mine the coordinate perturbation G and the gauge function S,
and therefore the higher order gyrocenter coordinates. We
will call the freedoms in choosing gyrocenter coordinates
gyrocenter gauges. One special gyrocenter gauge is the so-
called gyrogauge, a gauge group associated with how the
gyrophase � is measured. This gauge group of transformation
is given by

R → R� + ���X�, � → �� + ��X� , �85�

where R= �R0 ,R�, X= �t ,X�, �= �−� /�t ,��, and ��X� is an
arbitrary scalar function on M. The � in Eq. �64� is invariant
under this group of transformation.

V. GYROKINETIC SYSTEMS

After obtaining the expression of � in Eq. �74� for the
gyrocenter, we can apply the geometric field theory devel-
oped in Sec. II to derive the corresponding geometric gyro-
kinetic theory. The gyrokinetic equation is given by Eq. �8�,
which is explicitly

dZj

dt

�F

�Zj
= 0, �0 � j � 6� . �86�

Here, F is the particle distribution function in the gyrocenter
coordinates Z= �t ,X ,u ,� ,��. Let

F = �F� + F̃ , �87�

where �F� and F̃ are the gyrophase independent and depen-
dent parts of F. Because

�

��
�dZ

dt
� = 0, �88�

the gyrokinetic equation can be easily split into gyrophase
dependent and independent parts as well

��F�
�t

+
dX

dt
· �X�F� +

du

dt

��F�
�u

= 0, �89�

�F̃

�t
+

dX

dt
· �XF̃ +

du

dt

�F̃

�u
+

d�

dt

�F̃

��
= 0, �90�

where dX /dt, du /dt, and d� /dt are given by Eqs. �80�–�82�.
The gyrophase dependent F̃ can be decoupled from the sys-

tem by setting F̃=0, and Eqs. �89� and �14� from a close

system for �F� and A= �−	 ,A�. However F̃=0 does not im-

ply that f̃ =0. The distribution function f in the laboratory
coordinates becomes gyrophase dependent through the pull-
back transformation.28 Finally, the gyrokinetic system is
completed by the Maxwell’s equation and the 4-current
given by Eqs. �14� and �17�. We emphasize that by using the
geometric field theory developed in Sec. II, the Maxwell’s
equation and the 4-current are uniquely determined by the
1-form � as well.

The expression of � in Eq. �74� is rather complicated. It
contains all the physical aspects of the gyrocenter dynamics
in an inhomogeneous, time-dependent electromagnetic field
with long and short space-time wavelength. For studies fo-
cusing on different physics phenomena, we can selectively
adopt different terms in � to investigate the corresponding
physics. The value of the geometric field theory developed
here is that it allows arbitrary approximations and simplifi-
cations to be made at the level of the 1-form, and the result-
ing kinetic system still possesses the good geometric proper-
ties, such as the conservation of phase space volume and
energy-momentum if the 1-form does not depend on the
space-time coordinate explicitly. To look at several special
gyrokinetic systems, we pick

� = A† · dX + �d� − Hdt , �91�

H =
u2 + w2 + D2

2
+ 	0 + ��1 + �2� �92�

as a model for gyrocenter dynamics in the gyrocenter coor-
dinates Z= �t ,X ,u ,� ,��. From Eq. �6�, the Liouville 6-form
corresponding to Eq. �91� is

� = B�
†dx1 ∧ dx2 ∧ dx3 ∧ du ∧ d� ∧ d�

+ �Aj,t
† bi − Ai,j

† u − bjH,i�dt ∧ dxj ∧ dxi ∧ du ∧ d� ∧ d�

+ �Ai,j
† H,l + Ai,j

† Al,t
† �dxj ∧ dxi ∧ dxl ∧ dt ∧ d� ∧ d�

− Ai,j
† blH,�dxj ∧ dxi ∧ dxl ∧ dt ∧ du ∧ d� . �93�

The conservative form of the gyrokinetic equation is ob-
tained from the general Vlasov equation in conservative form
Eq. �10�. It can be explicitly written as
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�

�t
�B�

†�F�� + �X · �B�
†�F�Ẋ� +

�

�u
�B�

†�F�u̇� = 0, �94�

where B�
† is allowed to depend on t. Because � in Eq. �91�

does not indeed depend on the space-time explicitly, the
energy-momentum of the system is conserved. We study
three special cases of the gyrokinetic systems by further sim-
plifying the � in Eq. �91�.

A. Gyrokinetic theory without the FLR effect:
Drift kinetic theory

For physical processes where the finite Lamour radius
effect is not important, we can ignore all the first order terms
related to �	1 ,A1� in Eq. �91� and identify particle positions
with gyrocenters. This is the drift kinetic limit of the gyro-
kinetic theory. As a model, we will also ignore the back-
ground E
B flow in this analysis. Let

� = A† · dX + �d� − Hdt , �95�

H =
u2 + w2

2
+ 	0, �96�

B† � � 
 �A0 + ub�, B�
† � B† · b , �97�

E0
† � E0 − ���B0� − u

�b

�t
. �98�

Using the general 4-current expression in Eq. �17� and the
Liouville 6-form in Eq. �93�, we have

j = jg + jM , �99�

jg = �
�−1�x�

qF� ∧
���x�
�Ai�x�

=� qF�E† 
 b + B†u

B�
† �B�

†du ∧ d� ∧ d� , �100�

jM = −
�

�xj��
�−1�x�

qF� ∧
���x�

�Ai,j�x��
= − � 
 �� qF��b −

uE† 
 b

BB�
† −

u2B�
†

BB�
† �


B�
†du ∧ d� ∧ d�� . �101�

Here jg is the current associated with the gyrocenter drift and
jM is the diamagnetic current. It is interesting to note that
current jg contains all the particle drift motion except for the
Banõs drift. The first term in jM is the usual diamagnetic
current, and the second and third terms are additional dia-
magnetic currents related to inhomogeneities of the electro-
magnetic field. From

��

�	0
= − dt , �102�

the density n is simply

n�x� =� FB�
†du ∧ d� ∧ d� . �103�

We emphasize that the current and density as functions of the
gyrocenter distribution function are self-consistently derived
from the geometrically generalized Vlasov-Maxwell equa-
tions. Previously such expressions are obtained using the
pullback transformation.28

Overall the drift equation and the Maxwell’s equation
can be explicitly written out as

�F

�t
+

dX

dt
· �XF +

du

dt

�F

�u
= 0, �104�

dX

dt
=

B†

B�
†�u +

�

2
b · � 
 b� −

b 
 E†

b · B† , �105�

du

dt
=

B† · E†

B�
† , �106�

A† � A0 + ub, B† � � 
 A†, B�
† � B† · b , �107�

E† � − �	0
† −

�A†

�t
= E0 − ���B0� − u

�b

�t
, �108�

�2A0 = − �
species

4�

c
j , �109�

�2	0 = − �
species

4�qn , �110�

where j and n are given by Eqs. �99� and �103�. The �A0 ,	0�
in Eqs. �109� and �110� are un-normalized.

B. Gyrokinetic theory in a time-independent
background

The next example that we consider is the gyrokinetic
system for electrostatic perturbation in a given time-
independent, inhomogeneous background �B0 ,E0�. We select

� = A† · dX + �d� − Hdt , �111�

H =
u2 + w2 + D2

2
+ 	0 + ��1 + �2� , �112�

	0
† � 	0 + �B0 +

D2

2
, A† � A0 + ub + D , �113�

��1� = �	1�X + ��� , �114�

S1 =
1

B0
� 	̃1�X + ��d� �

1

B0
	̃1

�1�, �115�

��2� = −
1

2
��	̃1 · �	̃1

�1�� 

b

B�
†B̄0

−
1

2B0
� �	̃1

2

��
� , �116�

where we have kept the second order contribution ��2�, and

B̄0 is a spatially averaged B0. The expression for S1 and ��2�
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are obtained from Eqs. �63� and �76� under the electrostatic
and low-frequency approximations with the subsidiary order-
ing 	̃1�vt

2. Since these approximations are introduced at the
1-form level, the resulting kinetic system will still have the
desirable exact conservation properties. The density response
is calculated from �� /�	1 according to Eqs. �17� and �111�,

n�x� = �
X
�

�−1�X�
��x − g�X��F� ∧ dt����1�g��

�	1�g�
+

���2�g��
�	1�g� �

=� �F +
�F

��

	̃1

B0
+ �F 


�	̃1
�1�

B�
†B̄0

· b

+
�F

�u

B† · �	̃1
�1�

B�
†B̄0

���x − X − ��X��B�
†d3Xdud�d� ,

�117�

where g�X�=X+�. The final gyrokinetic system for this case
is

�F

�t
+

dX

dt
· �XF +

du

dt

�F

�u
= 0, �118�

dX

dt
=

B†

B�
†�u +

�

2
b · � 
 b� −

b 
 E†

b · B† , �119�

du

dt
=

B† · E†

B�
† , �120�

A† � A0 + ub + D, B† � � 
 A†, B�
† � B† · b ,

�121�

E† � − ��	0 + �B0 +
D2

2
+ ��1 + �2�� , �122�

�2�	1 + 	0� = − �
species

4�qn , �123�

where n is given by Eq. �117� and �B0 ,E0� are assumed
given. The potentials in Eq. �123� are un-normalized. Since �
in Eq. �111� does not depend on t explicitly, the total energy
of the kinetic system is conserved, and this is valid for inho-
mogeneous background. In comparison with previous results
in Refs. 13 and 15 we note that in Eq. �116�, the denominator
of the first term for ��2� is different from that in Refs. 13 and
15, and an additional term proportional to �F /�u is found in
Eq. �117� for the density. These differences are of physical
importance in that Eqs. �111�–�123� guarantee an exact en-
ergy conservation in the general inhomogeneous magnetic
field.

C. Gyrokinetic theory in a time-dependent
background

The last simplified gyrokinetic system that we investi-
gate is the gyrokinetic system that allows for time-dependent
background. To simplify the problem, we only consider the
electrostatic case. The 1-form that uniquely determines the
equation system is the same as that in Eq. �111�, except that

	0 is allowed to depend on time. Since gyrokinetic theory
treats the equilibrium field 	0 and the perturbed field 	1

differently, in order to determine both fields self-consistently
from the distribution function F, we need two field equa-
tions. Let

	 = 	0 + 	1. �124�

It is easy to verify that �S /�	0=0 and �S /�	1=0 both give
the Poisson equation for 	, but with different source terms.
To calculate the density in terms of the distribution function
from �� /�	0, we first calculate

− � ∧
��

�	0,i
= − � ∧

�D

�	0,i
· dX + � ∧

�D2/2

�	0,i
dt , �125�

which gives

n�0��x� =� FB�
†du ∧ d� ∧ d� + � ·� 
E0�

B0
�1 −

B�
†

B0
�

−
1

B0
ub 
 � 
 �ub + D� −

E�
†

B0

Fdud�d� .

�126�

The calculation of �� /�	1=0 is the same as that for Eq.
�117�,

n�1��x� =� �F +
�F

��

	̃1

B0
+ �F 


�	̃1
�1�

B�
†B̄0

· b

+
�F

�u

B† · �	̃1
�1�

B�
†B̄0

���x − X − ��X��B�
†d3Xdud�d� .

�127�

These two Poisson equations and the gyrokinetic equation
form a complete equation systems for �F ,	0 ,	1�,

�F

�t
+

dX

dt
· �XF +

du

dt

�F

�u
= 0, �128�

dX

dt
=

B†

B�
†�u +

�

2
b · � 
 b� −

b 
 E†

b · B† , �129�

du

dt
=

B† · E†

B�
† , �130�

A† � A0 + ub + D, B† � � 
 A†, B�
† � B† · b ,

�131�

E† � − ��	0 + �B0 +
D2

2
+ ��1 + �2�� −

�D

�t
, �132�

�2	 = �2�	0 + 	1� = − �
species

4�qn�0�, �133�

�2	 = �2�	0 + 	1� = − �
species

4�qn�1�, �134�

where n�0� and n�1� are given by Eqs. �126� and �127�. Equa-
tions �133� and �134� are two independent field equations for
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the two fields of 	0 and 	1, because the source terms depen-
dent on 	0 and 	1 differently. The potentials in Eqs. �133�
and �134� are un-normalized.

VI. CONCLUSIONS

During the pedestal cycle of H-mode edge plasmas in
tokamak experiments, large-amplitude pedestal buildup and
destruction coexist with small-amplitude drift wave turbu-
lence. The pedestal dynamics simultaneously includes fast
time scale electromagnetic instabilities, long time scale
turbulence-induced transport processes, and more interest-
ingly the interaction between them. To numerically simulate
the pedestal dynamics from first principles, it is desirable to
develop an effective algorithm based on the gyrokinetic
theory. However, existing gyrokinetic theories cannot fully
treat nonlinear electromagnetic perturbations with
multiscale-length structures in space-time, and therefore do
not apply to edge plasmas. In this paper, we first constructed
a geometrically generalized Vlasov-Maxwell system using
the Poincaré-Cartan-Einstein 1-form. Geometric gyrokinetic
theory is then developed as a special case of the geometri-
cally generalized Vlasov-Maxwell system. Arbitrary approxi-
mations based on physical intuition or mathematical simpli-
fication can be made at the 1-form level and the resulting
gyrokinetic systems still possess exact geometric conserva-
tion properties. The construction of the gyrokinetic system is
essentially the construction of the gyrosymmetry using the
Lie perturbation method. The gyrokinetic system developed
allows for time-dependent electromagnetic background coex-
isting with short wavelength electromagnetic perturbation,
and therefore applicable to the edge plasmas in magnetic
confinement devices.
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