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Gyrokinetic perpendicular dynamics
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Gyrokinetic perpendicular dynamics, an important component not systematically considered in
previous gyrokinetic theories, is identified and developed. A ‘‘distribution function’’S and its
governing gyrokinetic equation are introduced to describe the gyrokinetic perpendicular dynamics.
The complete treatment of the perpendicular current rendered by the gyrokinetic perpendicular
dynamics enables one to recover the compressional Alfve´n wave from the gyrokinetic model. From
the viewpoint of gyrokinetic theory, the physics of the compressional Alfve´n wave is the
polarization current at second order. Therefore, in a low frequency gyrokinetic system, the
compressional Alfve´n wave is naturally decoupled from the shear Alfve´n wave and drift wave. In
the gyrocenter coordinates, the gyrophase dependent parts of the distribution functionS and f̃ are
decoupled from the gyrophase independent partf̄ . Introducing the gyrokinetic perpendicular
dynamics also extends the gyrokinetic model to arbitrary frequency modes. As an example, the
Bernstein wave is recovered from the gyrokinetic model. The gyrokinetic perpendicular dynamics
uncovered here emphasizes that the spirit of gyrokinetic reduction is to decouple the gyromotion
from the particle’s gyrocenter orbit motion, instead of averaging out the gyromotion. ©1999
American Institute of Physics.
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I. PHYSICS OF GYROKINETIC PERPENDICULAR
DYNAMICS

The electrostatic gyrokinetic model was originally d
rived by Rutherford and Frieman1 and Taylor and Hastie2 for
low frequency modes~v!V!. Since then, gyrokinetic theor
has been significantly advanced and its importance for m
netized plasmas, especially for magnetic fusion, has b
greatly appreciated. The gyrokinetic system was first
tended to electromagnetic modes by Cattoet al.3 using the
guiding center coordinates4 and independently by Antonse
et al.5 Nonlinear electrostatic gyrokinetic equations for sm
amplitude perturbations were then derived by Frieman
Chen,6 Lee,7 and later by Dubinet al.8 and Yanget al.9 us-
ing the Hamilton Lie perturbation method, and by Hahm10

using the phase space Lagrangian Lie perturbation met
Recently, Hahmet al.11 and Brizard12–14 developed the first
nonlinear electromagnetic gyrokinetic system. Meanwhile
gyrokinetic system valid for both long wavelength and sh
wavelength modes~without using the ballooning represent
tion! was investigated by Qinet al.15–18 The importance of
gyrokinetic Maxwell equations was later realized. Lee7 first
discovered the difference between the gyrocenter density
the particle density in the Poisson equation, which was
ther studied by Dubinet al.8 The gyrokinetic effect in the
parallel Ampere’s law was then investigated by Hah
et al.11

Parallel to Littlejohn’s Hamiltonian method for guidin
center motion,19–21 the gyrokinetic formalism using the Lie
perturbation method has provided theoretical treatm
which is more systematic and comprehensive, and has b
applied to many important problems in magnetic fusi
plasma. For example, particle simulation based on the g
1571070-664X/99/6(5)/1575/14/$15.00
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kinetic model7,22–28has proved to be an effective method
study electrostatic turbulence and the associated trans
phenomena. Electromagnetic gyrokinetic models have a
been used to study drift waves, shear Alfve´n waves, and the
coupling between them.15–18 However, previous gyrokinetic
theories using the Lie perturbation method have not b
able to recover the well-known compressional Alfve´n wave.
This can be attributed to the lack of a systematic treatm
for the plasma perpendicular response in gyrokinetic mod
For a kinetic system, the kinetic equation can be viewed a
theoretical description for the response of the plasma
terms of particle density and flow, to the electromagne
field. When the Maxwell equations are included, the syst
of equations is complete. Since the Maxwell equations
always the same in a chosen coordinate system, the re
that the compressional Alfve´n wave is not recoverable from
previous gyrokinetic models must lie in the gyrokinet
equation itself. In this paper, we develop the perpendicu
gyrokinetic dynamics, an important component not syste
atically considered in previous gyrokinetic theories. A ‘‘di
tribution function’’ S and a gyrokinetic equation for it ar
introduced to describe the gyrokinetic perpendicular dyna
ics. To systematically derive our electromagnetic gyrokine
system, and especially the gyrokinetic perpendicular dyna
ics, we use the phase space Lagrangian Lie perturba
method.

The complete treatment of the perpendicular current r
dered by the gyrokinetic perpendicular dynamics enables
to recover the compressional Alfve´n wave from the gyroki-
netic model. It turns out that the physics of the perpendicu
current for the compressional Alfve´n wave is the polarization
drift, which is of the orderO(ev

2 ), where ev[v/V. The
compressional Alfve´n wave in tokamaks usually has high
5 © 1999 American Institute of Physics

AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html.
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frequency than the shear Alfve´n wave and the drift wave. I
can cause numerical instabilities in simulations targeted
the shear Alfve´n waves and the drift waves. In fluid simula
tions, implicit schemes are often required to eliminate th
numerical instabilities. The recovery of the compressio
Alfvén wave in the gyrokinetic model shows that, in the lo
frequency gyrokinetic system, the compressional Alfv´n
wave is naturally decoupled from the shear Alfve´n waves
and the drift waves. Therefore, implicit schemes are not n
essary for gyrokinetic simulations.

Introducing the gyrokinetic perpendicular dynamics a
extends the gyrokinetic model to arbitrary frequency mod
The gyrokinetic theory for arbitrary frequency modes w
first studied by Chen and Tsai.29,30 It was then investigated
by Leeet al.,31 Chiu,32 Brizard,14 and applied to the problem
of fast wave cyclotron resonance by Lashmore-Davies
Dendy.33–35 The basic method was based on the point
view that averaging over gyrophase is equivalent to tak
the zeroth component of the Fourier series in gyrophase,
keeping all the Fourier components extends the gyrokin
model to arbitrary frequency.29 However, all of these theo
retical models use the guiding center coordinates in wh
the particle’s gyromotion is not decoupled from the rest
the particle dynamics when time-dependent perturbations
ist in the system. Therefore, Fourier decomposition in
rophase has to be carried out for the field variables, the V
sov equation, and the Maxwell equations. This results i
coupled equation system for all the gyrophase harmonics
the other hand, keeping all the gyrophase harmonics and
coupling terms guarantees that the coupled system is f
equivalent to the original Vlasov equation and capable
recovering all the results obtained by the conventio
Vlasov–Maxwell method, such as the compressional Alfv´n
wave, which has not been recovered by other gyrokin
approaches. In our approach, we use the gyrocenter co
nates instead of the guiding center coordinates. The
rophase independent part and the gyrophase dependen
are naturally separated in the gyrocenter coordinates. Co
quently, the mathematical formalism is much more transp
ent and general. For example, the methods developed
apply to arbitrary wavelength modes. We do not assume
ballooning representation; the background inhomogen
can be treated completely. In a sense, the extension of g
kinetic theory to arbitrary frequency rendered by the gyro
netic perpendicular dynamics reported here can be viewe
the Hamiltonian~geometric! counterpart for the theory initi-
ated by Chen and Tsai.

The insight into the gyrokinetic perpendicular dynam
uncovered here clarifies the understanding of gyrokinetic
duction. What gyrokinetic theory offers is a simplified ve
sion of the Vlasov–Maxwell system by utilizing the fact th
the particle’s gyroradius is much smaller than the sc
length of the magnetic field:eB01B1

[ur/LB01B1
u!1. As

long aseB01B1
is small, we are able to construct a gyrocen

coordinate system in which the particle’s gyromotion is d
coupled from the rest of the particle dynamics. The existe
of the gyrocenter coordinates does not depend on the m
frequency directly. Therefore even when the mode f
Downloaded 19 Jan 2001  to 198.35.7.82.  Redistribution subject to 
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quency is comparable to the cyclotron frequency,ev;1, we
can still take advantage of the gyrocenter coordinates
simplify the kinetic system. On the other hand, informati
about the gyromotion is obviously important for cyclotro
waves. How does the gyrokinetic model provide this info
mation? It will be shown that, for arbitrary frequency line
analysis and nonlinear low frequency analysis, the distri
tion function in the gyrocenter coordinate system does
depend on the gyrophase. All the information about the
romotion is contained in the ‘‘distribution function’’S intro-
duced in the construction of the gyrocenter coordinates.
emphasize that the spirit of gyrokinetic theory is to decou
the gyromotion from the particle’s gyrocenter orbit motio
instead of averaging it out. As a matter of fact, for the co
pressional Alfve´n wave in the framework of gyrokinetic
theory, information about the gyromotion is important. If w
simply average out the gyromotion, the compressional
fvén wave will be ‘‘averaged out’’ as well.

In the gyrocenter coordinate system, the gyrokine
equation consists of two components, the gyrokinetic eq
tion for f and that forS, and it is fully equivalent to the
Vlasov equation. To be accurate, the gyrokinetic equat
~including both components! is the Vlasov equation in the
gyrocenter coordinate system. The Vlasov equation, in
general~geometric! form $F,HE%50, is coordinate indepen
dent. The simplest and often-used coordinate system for
6D phase space is the particle coordinates~x,v! ~representing
all coordinate systems with decoupled configuration sp
coordinates and velocity space coordinates!. As different
choices of the 6D phase space coordinate system, the gu
center coordinate system (X,U,m,j) and the gyrocenter co
ordinate system (X̄,Ū,m̄,j̄) have the same ability as the pa
ticle coordinate system to describe the Vlasov equation.
important to notice that the previously derived gyrokine
equations forf alone is not the Vlasov equation in the gyr
center coordinate system. Only when the gyrokinetic eq
tion for S is also included do we obtain the Vlasov equati
in the gyrocenter coordinate system. This is one of the m
tivations of this paper. From this point of view, Chen a
Tsai’s equation system is the representation of the Vla
equation in the guiding center coordinate if all the gyropha
harmonics and coupling terms are kept. A single gyrokine
equation forf is not the Vlasov equation in either the guidin
center coordinate system or the gyrocenter coordinate
tem.

Even though all coordinate systems are geometric
equivalent, the algebra involved is different depending on
specific problems being studied. For applications in mag
tized plasmas, the advantage of the gyrocenter coordi
system lies at the fact that in this coordinate system the
time scale gyromotion is decoupled from the particle’s gy
center orbit dynamics. For low frequency electrostatic mo
and shear Alfve´n modes, the gyromotion is not importan
and is naturally decoupled from the system as if it co
pletely ‘‘averaged out.’’ On the other hand, general fr
quency mode and compressional Alfve´n modes can be easil
recovered by including the gyrokinetic perpendicular dyna
ics in the gyrocenter coordinate system, since the gyroce
AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html.
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1577Phys. Plasmas, Vol. 6, No. 5, May 1999 Qin et al.
orbit motion is independent of the gyromotion. The curre
numerical codes and particle simulation codes based on
rocenter orbit integration for low frequency electrostatic a
shear Alfvén mode can be extended to general frequency
appropriately adding in the component of perpendicular
namics.

The paper is organized as follows. In Secs. II, III, a
IV, the gyrokinetic system is developed using the pha
space Lagrangian Lie perturbation method, the mathema
background of which is briefly introduced in the Append
In Sec. II, we construct the gyrocenter coordinates by a s
plectic transformation from the guiding center coordinat
Then, in Sec. III, the Gyrokinetic Maxwell equations a
discussed. In Sec. IV, the gyrokinetic equations, includ
that for the ‘‘distribution function’’ S responsible for the
gyrokinetic perpendicular dynamics, are developed in the
rocenter coordinates. As examples of many possible app
tions of the gyrokinetic perpendicular dynamics, the co
pressional Alfve´n wave and the Bernstein wave a
recovered, respectively, in Secs. V and VII, and the Gyro
netic perpendicular Ohm’s law for shear Alfve´n waves is
derived in Sec. VI. In the last section, we summarize a
discuss future work.

II. SYMPLECTIC GYROCENTER TRANSFORMATION

To establish our gyrokinetic system for arbitrary wav
length, electromagnetic perturbations, we start from Litt
john’s guiding center theory. When

eB0
[U r

LB0
U!1, ~1!

we can construct a set of noncanonical phase space co
nates in which the gyromotion is decoupled from the res
the particle dynamics to any order ineB0

. This special set of
coordinates is called the guiding center coordinates. The
derlying method is to look at the perturbation of the pha
space Lagrangian wheneB0

is small, and introduce a nea
identity coordinate transformation such that, in the new
ordinate system, the gyromotion is decoupled. We will su
marize the basic results without derivation. The mathem
cal background of this theory is briefly introduced in t
Appendix.

The equilibrium is assumed to be magnetostatic. T
guiding center transformationTGC, which transforms the
particle coordinate into the guiding center coordinate,
given by20,21,12,14

X5x2r0 ,

U5v i1
c

e
m0b–“3b1O~eB0

2 !,

~2!
m5m02

mc

e
m0

v i

B
b–“3b1O~eB0

2 !,

j5u2r0–R2
mc

e

v i

4B
~ r̂0r̂02 v̂'v̂'!:“b1O~eB0

2 !,

where (x,v i ,v' ,u) are the usual local particle coordinate
r0 , defined in particle coordinates, is the usual gyroradiuu
is chosen such thatv̂'52e/ueu(ex sinu1ey cosu). ex andey
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are two perpendicular directions in the configuration spa
and (ex ,ey ,b) is a right-handed orthogonal frame.

In the extended guiding center coordinat
(X,U,m,j,w,t), the extended phase space Lagrang
is20,21,12,14

gE5ĝE2HE dt

5S e

c
A1mUb2m

mc

e
WD •dX1

mc

e
m dj2w dt

2~H2w!dt, ~3!

where species subscripts are temporarily suppressed.X is the
configuration component of the guiding center coordinateU
is the parallel velocity,m is the magnetic moment,z is the
gyrophase angle, and

W5R1
b

2
~b–“3b!, R5~“e1!–e2 , b5B/B. ~4!

e1 and e2 are unit vectors in two arbitrarily chosen perpe
dicular directions, ande1 and e2 are perpendicular to eac
other. The regular phase space is extended to include
time coordinatet and its conjugate coordinate energyw. ĝE

gives the extended symplectic structure,HE5H2w is the
extended Hamiltonian, andH is the regular Hamiltonian de
fined as

H5
mU2

2
1mB.

The corresponding Poisson bracket is obtained by inver
the symplectic structureĝEi j ,20,21,12

$F,G%5
e

mc S ]F

]j

]G

]m
2

]F

]m

]G

]j D2
cb

eBi*
•F S ¹F1W

]F

]j D
3S ¹G1W

]G

]j D G1
B*

mBi*
•F S ¹F1W

]F

]j D ]G

]U

2S ¹G1W
]G

]j D ]F

]U G1S ]F

]w

]G

]t
2

]F

]t

]G

]wD , ~5!

where

B* 5B1
cmU

e
“3b, Bi* 5b–B* . ~6!

The guiding center coordinate system in a static magn
field is illustrated in Fig. 1.

When the perturbed electromagnetic field is introduc
the extended phase space Lagrangian is pertur
accordingly:11,12

gE5gE01gE1 ,
~7!

gE15Fe

c
A1~TGC

21X,t !•d~TGC
21X!G2ef1~TGC

21X,t !dt,

whereTGC
21 is the inverse of the guiding center transform

tion:

TGC
21X5X1r01r11O~eB

2 !, ~8!

where
AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html.
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r0[
c

e
A2mm

B
r̂0 . ~9!

~See Fig. 1.! r̂0 is the unit vector pointing from the guidin
center to the particle’s physical position, andr1 is the next
order correction. To derive the linear gyrokinetic equatio
we usually do not need higher orders of the guiding cen
transformation, because the guiding center transformatio
the transformation from the particle ‘‘physical coordinate
in an equilibrium magnetic field to the ‘‘guiding center c
ordinate’’ in the same equilibrium magnetic field. No pe
turbed field is involved in this transformation. However, f
nonlinear gyrokinetic formalisms, the background and p
turbed fields cannot be separated very well; therefore i
necessary to keep ther1 term. Our current formalism is a
linear one. The leading order expression,

TGC
21X5X1r0 , ~10!

will be sufficient for our purpose.
In tokamak geometry,LB;R0 . The background~equi-

librium! FLR ~finite Larmor radius! effect is represented b
the small parametereB and ignored in linear gyrokinetic
theory. Important FLR effects come from the perturbed m
netic field whose wavelength could be much shorter than
scale length of the equilibrium structure and could be co
parable to the particle gyroradius. This FLR effect is rep
sented by the parameter:ed5ukru. In general, we keep the
FLR effects on the perturbed field to at leastO(ed

2).
Expandingd(TGC

21X), we obtain:

gE15
e

c
A1~X1r0 ,t !•F ~11¹r0!•dX1

]r0

]m
dm

1
]r0

]j
djG2ef1~X1r0 ,t !dt. ~11!

The essence of the Lie perturbation method is to introduc
near identity transformation from the equilibrium guidin
center coordinatesZ5(X,U,m,j,w,t) to the gyrocenter co-
ordinates Z̄5(X̄,Ū,m̄,j̄,w̄, t̄) when the perturbed field is
present such that the transformed extended phase spac
grangianḡ can be gyrophase independent.

We emphasize that there are three different coordin
systems appearing in our formalism.~x,v! is the particle
‘‘physical’’ coordinate system.Z5(X,U,m,j,w,t) is the

FIG. 1. Guiding center coordinate system.
Downloaded 19 Jan 2001  to 198.35.7.82.  Redistribution subject to 
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~extended! ‘‘guiding center’’ coordinate system in an equ
librium magnetic field. When the time-dependent elect
magnetic field is introduced, we use the~extended! ‘‘gyro-
center’’ coordinate systemZ̄5(X̄,Ū,m̄,j̄,w̄, t̄) to describe
the gyrocenter motion. Among other things, the most we
known difference between the guiding center motion and
gyrocenter motion is the polarization drift motion due to t
time-dependent electrical perturbation. We are followi
Brizard12 in using the terms ‘‘gyrocenter’’ and ‘‘guiding cen
ter’’ to distinguish these two different coordinate systems

For the transformation

Z̄i5~eGZ! i'Zi1Gi~Z!, ~12!

the leading order transformed extended phase space
grangian is:

ḡE15gE12 i GvE01dS5gC E12H̄E1 dt, ~13!

wherevE05dgE0 , S is the gauge function, andi GvE0 is the
interior product between the vector fieldG and the two form
vE0 . There are several ways to makegC E and H̄E dt gy-
rophase independent. We will chooseG andS such that the
transformation is symplectic, that is, there is no perturbat
on the symplectic structure,

gC E150. ~14!

Other nonsymplectic transformations are also possible. G
erally nonsymplectic transformations are more algebraic
involved. We will use the symplectic transformatio
throughout this paper.

This symplectic transformation will transfer the pertu
bation into the Hamiltonian. Since we choose not to chan
the time variablet, Gt50. Other components ofG are solved
for from gC E150:

GX52
c

eBi*
b3S e

c
A11¹SD2

B*

mBi*
]S

]U
1O~eB!,

GU5
B*

mBi*
•S e

c
A11¹SD1O~eB!,

Gm5
e

mc S e

c
A1•

]r0

]j
1

]S

]j D , ~15!

Gj52
e

mc S e

c
A1•

]r0

]m
1

]S

]m D1O~eB!,

Gw52
]S

]t
.

The transformed Hamiltonian is

H̄E15HE12Gi
]HE0

]xi 1Gw5ef1~X̄1r0 ,t !

2
e

c
A1~X̄1r0 ,t !•$X̄1r0 ,HE0%2$S,HE0%, ~16!

in which

$X̄1r0 ,HE0%5V̄1vd , ~17!

where
AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html.
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V̄5V̄'1Ūb, V̄'5$r0 ,HE0%. ~18!

In the calculation related to the gyrocenter transformati
we will only keep the lowest order in terms ofeB , because
the background FLR effects normally are not important.

Here we encounter the second choice in the proces
constructing gyrocenter coordinates. We choose

H̄E15 K ef1~X̄1r0 ,t !2V̄•

e

c
A1~X̄1r0 ,t !L , ~19!

where^ & represents the gyrophase averaging operation. T
leads to the equation determining the gauge functionS:

$S,HE0%5V
]S

]j
1

]S

]t
1

]S

]X̄
•$X,HE0%1

]S

]U
$U,HE0%

~20!

5ef̃1~X̄1r0 ,t !2
e

c
V̄–A1̃~X̄1r0 ,t !,

where f̃1(X̄1r0 ,t) and V̄–A1̃(X̄1r0 ,t) are the gyrophase
dependent parts off1(X̄1r0 ,t) and V̄–A1(X̄1r0 ,t), re-
spectively:

f̃1~X̄1r0 ,t !5f1~X̄1r0 ,t !2^f1~X̄1r0 ,t !&,
~21!

V̄–A1̃~X̄1r0 ,t !5V̄–A1~X̄1r0 ,t !2^V̄–A1~X̄1r0 ,t !&.

Further study in the forthcoming sections will reveal t
fundamental roles ofHE1 andS in many unexplored area o
gyrokinetic theory. In particular, we will see thatS is the
central piece of the theory for arbitrary frequency mod
compressional Alfve´n waves, and the gyrokinetic Ohm’
law.

Since the transformation we have chosen is symplec
gC E150, the Poisson bracket in the gyrocenter coordinate
the same as that in the guiding center coordinates, whic
given by Eq.~5!. After obtaining the desired gyrocenter c
ordinate, we will ‘‘push’’ objects on the original particl
coordinates onto the new coordinates. The objects of ph
cal interest here are the Maxwell equations and the Vla
equation.

We will useA andf to notate the perturbed field here
after; the subscript ‘‘1’’ will be dropped. Unless clarity re
quires us to use the barred notation, we will also drop
bars for the gyrocenter coordinates hereafter, and
Z5~X,U, m, j! to denote the 6D gyrocenter coordinates.

III. GYROKINETIC MAXWELL EQUATIONS

Before introducing the gyrokinetic equations, we look
the gyrokinetic Maxwell equations. The gyrokinetic Maxwe
equations are as important as the gyrokinetic equation its
The differences between different versions of the gyrokine
equation can usually be resolved when the correspon
gyrokinetic Maxwell equations are taken into account in
appropriate coordinate systems.

The Poisson equation is

2¹2f~r ,t !54p(
j

eE d3vf ~r ,v,t !1
1

c

]

]t
¹•A~r ,t !, ~22!

where
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Ampere’s law is

¹3~¹3A~r ,t !!5
4p

c (
j

eE d3vvf ~r ,v,t !, ~24!

where

E d3vvf ~r ,v,t !5E d6ZVGC~Z!@TGY* f #~Z,t !d~TGC
21X2r !.

~25!

In the above equations,d6Z is understood to be
(Bi* /m)d3X dU dm dj. TGY* is the pull-back transformation
which transforms the perturbed distributionf in the gyro-
center coordinates into that in the guiding center coordina
TGC

21 is the inverse ofTGC that transforms the particle phys
cal coordinates (r ,v) into the guiding center coordinates. W
assume the guiding center transformationTGC and the corre-
sponding pull-back transformationTGC* , and the gyrocenter
transformationTGY and the corresponding pull-back tran
formationTGY* are one–one onto~bijective!. Generally for a
macroscopic quantityQ(r ) in the particle coordinates, we
have10,12,8,11

Q~r !5E Q~r ,v! f P~r ,v,t !d3v

~26!

5E d~x2r !Q~z! f P~z,t !d6z.

In the guiding center coordinateZ5(X,U,m,j),

Q~r !5E @TGC* 21Q#~Z! f GC~Z,t !d~TGC
21X2r !d6Z. ~27!

Replacingf GC(Z,t) by its pull-back from the gyrocenter co
ordinate, we get

Q~r !5E @TGC* 21Q#~Z!@TGY* f GY#~Z,t !d~TGC
21X2r !d6Z.

~28!

The pull-back transformation from the gyrocenter coor
nates to the guiding center coordinates is easily obtai
from the expression forG given by Eq.~15!,

TGY* F5F1LGF

5F2
b

B
3S A1

c

e
¹SD •¹F1

e

mc
b•S A1

c

e
¹SD ]F

]U

1
e

mcFe

c
A•

]r0

]j
1

]S

]j G ]F

]m
1O~eB!, ~29!

whereLGF represents the Lie derivative ofF with respect to
the vector fieldG. The pull-back transformationTGY* lies at
the center of the gyrokinetic theory. Lee7 first discovered its
physical effects for electrostatic modes. By this discove
several basic difficulties in both gyrokinetic theory and g
rokinetic simulation are solved. This problem was furth
studied by Dubin et al.,8 Hahm et al.,11 Hahm,10 and
Brizard.12 To be historically complete, we note that on
AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html.
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piece of the pull-back transformations appeared in the gy
kinetic equation for ballooning modes derived by Ca
et al.3 and Antonsenet al.5 in the form

e

mc

]F

]m H Ff2
U

c
AiGJ01

V'

k'c
BiJ .

However, this expression was only introduced as a ma
ematical convenience. As an important component of
gyrokinetic theory, the pull-back transformation in the Ma
well equations will enable us to recover many classical
sults, such as the compressional Alfve´n wave, from a purely
gyrokinetic approach. Naturally, it brings in kinetic effects
well.

IV. GYROKINETIC EQUATIONS AND GYROKINETIC
PERPENDICULAR DYNAMICS

Now we are ready to obtain the linear gyrokinetic equ
tion. In the ~extended! gyrocenter coordinate
(X,U,m,j,w,t), the distribution functionF satisfies the Vla-
sov equation:

$F,HE%5
]F

]t
1$F,H%5

]F

]t
1Ẋ

]F

]X
1U̇

]F

]U
1 j̇

]F

]j
50.

~30!

The linear gyrokinetic equation in its geometric form~coor-
dinate independent form! can be written as:

$ f ,HE%1$F0 ,HE1%50, ~31!

or

] f

]t
1$ f ,H0%52$F0 ,H1%, ~32!

where

F5F01 f ,

H05
mU2

2
1mB, ~33!

H15 K ef1~X1r0 ,t !2
e

c
V–A1~X1r0 ,t !L .

Let f 5 f̄ 1 f̃ and f̄ 5^ f &. SinceẊ, U̇, j̇ and$F0 ,H1% are
gyrophase independent, gyrophase averaging gives

] f̄

]t
1Ẋ

] f̄

]X
1U̇

] f̄

]U
52$F0 ,H1%, ~34!

and

] f̃

]t
1Ẋ

] f̃

]X
1U̇

] f̃

]U
1 j̇

] f̃

]j
50. ~35!

The equation forf̃ is homogeneous and does not depend
the perturbed field. For the initial value problem,f̃ is purely
a residual of the gyrophase dependent part of the initial p
turbation. The physics for linear eigenmode analysis requ
f̃ 50 when the linear drivingf50 andA50. Since f̃ does
not depend on the field perturbation,f̃ 50 for any field per-
turbations. Therefore we conclude
Downloaded 19 Jan 2001  to 198.35.7.82.  Redistribution subject to 
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f 5 f̄ . ~36!

The distribution functionf only contains the gyrophase inde
pendent part, and the gyrokinetic equation is valid for ar
trary frequency and wavelength as long as the gyroce
coordinates exist.

In the coordinates (X,U,m,j,v,t), the linear gyroki-
netic equation is

] f

]t
1~Ub1vd!•¹ f 2

1

m
b•¹H0

] f

]U

5
c

eB
b•~¹F03¹H1!2

1

m
b•S ¹F0

]H1

]U
2¹H1

]F0

]U D .

~37!

Another set of gyrocenter coordinates (X,e,m,j,t) is of-
ten used.e is the total energy in the unperturbed field, that

e5H05
mU2

2
1mB0 . ~38!

In this set of gyrocenter coordinates, the linear gyrokine
equation is:

] f

]t
1~Ub1vd!•¹ f 5S cb

eB
3¹F0D •¹H1

1
]F0

]e
~Ub1vd!•¹H1 . ~39!

An alternative form of this equation is written in terms of th
nonadiabatic part off,

g5 f 2H1

]F0

]e
, ~40!

]g

]t
1~Ub1vd!•¹g5S cb

eB
3¹F0•¹2

]F0

]e

]

]t DH1 . ~41!

The fact thatf contains no gyrophase dependent part
the gyrocenter coordinates does not imply thatf is gyrophase
independent in the particle coordinates. The important inf
mation about gyromotion is carried by the gauge functionS
whose governing equation is:14

$S,HE0%5V
]S

]j
1

]S

]t
1

]S

]X
•$X,HE0%1

]S

]U
$U,HE0%

5ef̃1~X1r0 ,t !2
e

c
V–A1̃~X1r0 ,t !. ~42!

This equation plays the same role for perpendicular dyna
ics as the gyrokinetic equation does for the parallel dyna
ics. In this sense,S, as a function of phase space and tim
can be viewed as a ‘‘distribution function,’’ even though i
dimension is@energy#@time#. Contrary to the gyrophase inde
pendent functionf, S is gyrophase dependent, and it can
solved for in a formal form when

ev5
v

V
!1.

Let

S5S~0!1evS~1!1ev
2 S~2!1¯ , ~43!
AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html.
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and

eS f̃2
1

c
V–ÃD5ef̃~X1r0 ,t !2

e

c
V–Ã~X1r0 ,t !.

To O(ev
0 ),

V
]S~0!

]j
5eS f̃2

1

c
V–ÃD ,

~44!

S~0!5
e

V E S f̃2
1

c
V–ÃDdj.

To O(ev
1 ),

V
]S~1!

]j
52

dS~0!

dt
,

~45!

S~1!52
e

V2

d

dt E E S f̃2
1

c
V–ÃDdj dj.

To O(ev
2 ),

V
]S~2!

]j
52

dS~1!

dt
,

~46!

S~2!5
e

V3

d2

dt2 E E E S f̃2
1

c
V–ÃDdj dj dj.

Therefore, we have

S5 (
n50

`

~2ev!n
e

Vn11

dn

dtn E ~n11!F f̃2
1

c
V–ÃGdjn11,

~47!

where

d

dt
[

]

]t
1$X,HE0%•

]

]X
1$U,HE0%

]

]U
~48!

is the total gyrokinetic time derivative and is gyrophase
dependent.

As discussed before, the purpose of solving the gyro
netic equation is to obtain the charge and current respon
in terms of the electromagnetic field, such that the Maxw
equations are complete. We have seen that the distribu
function f described by the usual gyrokinetic equation, E
~37!, cannot provide all the information about the plasm
responses. The pull-back transformation appearing in the
rokinetic Maxwell equations requires the solution forS,
which is governed by Eq.~42!. The effects ofS, i.e., the
gyrokinetic perpendicular dynamics, are present in all

FIG. 2. Compressional Alfve´n wave.
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Maxwell equations, although its effect in the perpendicu
Ampere’s law is most prominent and has not been reali
before. The perpendicular Ampere’s law can formally
written as:

~¹3¹3A!'5(
j

eE vdd~X1r02r ! f ~Z!d6Z

1(
j

eE V'@d~X1r02r !

2d~X2r !# f ~Z!d6Z1(
j

eE ~V'1vd!

3d~X1r02r !LGF0 d6Z, ~49!

whereLG is given in Eq.~29!, andS by Eq. ~42!.
Besides the compressional Alfve´n wave, gyrokinetic

perpendicular Ohm’s Law and Bernstein wave discussed
the next three sections, other applications of the gyrokin
perpendicular dynamics include the gyrokinetic MH
theory, which will be reported in future publications.

V. COMPRESSIONAL ALFVÉ N WAVE

In this section, we use the simplest example of the co
pressional Alfve´n wave in a homogeneous magnetiz
plasma to demonstrate the essence of gyrokinetic per
dicular dynamics.B is in theez direction. For simplicity, we
let k5kyey . The magnetohydrodynamic~MHD! results for
the compressional Alfve´n wave indicate that the magnet
perturbation is in the parallel direction, the electrical pert
bation and current perturbation are in theex direction, and
the plasma displacement is in theey direction. From the ki-
netic point of view, we can choose~see Fig. 2!

f50 and A5Axex . ~50!

The gyrokinetic equation is:

] f

]t
1Ub•¹ f 50. ~51!

AssumingAx , f }eikyy2 ivt, we havef 50.
Interesting physics is found in the gyrocenter pull-ba

transformation and the gyrokinetic Ampere’s law. In order
obtain the necessary pull-back transformation toO(ev

2 ), we
need to solve for]S/]j from Eq. ~42!. Note that$X,HE0%
5Ub and$U,HE0%50 in a homogeneous equilibrium. Also

]S

]X
•$X,HE0%50,

whenk5k' . Let

S5S~0!1evS~1!1ev
2 S~2!1O~ev

3 !. ~52!
AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html.
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As derived in Sec. IV,

V
]S

]j
'V

]S~0!1S~1!1S~2!

]j
1O~ev

3 !

~53!

5eS f̃2
1

c
V–ÃD2

e

V

]

]t E S f̃2
1

c
V–ÃDdj

1
e

V2

]2

]t2 E E S f̃2
1

c
V–ÃDdj dj1O~ev

3 !.

From the general form of the gyrocenter pull-back transf
mation

TGY* F5F1LGF5F2
b

B S A11
c

e
¹SD •¹F1

e

mc
b•S A1

1
c

e
¹SD ]F

]U
1

e

mcFe

c
A1•

]r0

]j
1

]S

]j G ]F

]m

1O~eB!, ~54!

we have:

@TGY* ~F01 f !#15 f 1
e

mc

]F0

]m H 2
ev'

2

V2c
Bi

2
e

V2

]

]tE S f̃2
1

c
V–ÃDdj

1
e

V3

]2

]t2E E S f̃2
1

c
V–ÃDdj djJ . ~55!

In the above derivation, we have used the following expr
sions for the gyro-average:

H15 K ef~X1r0 ,t !2
e

c
V–A~X1r0 ,t !L

5eJ0S k'v'

V D Ff~X,t !2
1

c
UAi~X,t !G

1e
v'

k'c
J1S k'v'

V Db•~¹3A'! ~56!

'eFf~X,t !2
1

c
UAi~X,t !1

v'
2

cV
Bi~X,t !G ,

]r0

]j
5

V'

V
. ~57!

We need to express the perturbed density and the pertu
Downloaded 19 Jan 2001  to 198.35.7.82.  Redistribution subject to 
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current in the Maxwell equations in terms of the perturb
fields. They can be derived from the general form of E
~26!.

n15 H E @TGY* ~F01 f !#~Z!d~X1r02r !d6ZJ
1

5E d~X1r02r ! f ~Z!d6Z1E d~X1r02r !
e

mc

]F0

]m

3H 2
ev'

2

V2c
Bi2

e

V2

]

]t E S f̃2
1

c
V–ÃDdj

1
e

V3

]2

]t2 E E S f̃2
1

c
V–ÃDdj djJ d6Z. ~58!

Detailed calculation shows that the quasi-neutrality condit

(
j

~en1! j50

is degenerate. It gives no information about the dispers
relation.

The perpendicular Ampere’s law is needed to compl
the equation system. For this purpose, it is necessary to
tain the perturbed perpendicular flow:

n0v1'5 H E V'@TGY* ~F01 f !#~Z!d~X1r02r !d6ZJ
1

~59!

5E V'd~X1r02r ! f ~Z!d6Z1E V'd~X1r02r !

3
e

mc

]F0

]m H 2ev'
2

V2c
Bi2

e

V2

]

]t E S f̃2
1

c
V–ÃDdj

1
e

V3

]2

]t2 E E S f̃2
1

c
V–ÃDdj djJ d6 Z.

Here we denote the macroscopic flow byv, which was used
differently in previous sections as the notation for the p
ticle velocity in the particle coordinates. However, there
no confusion because the meaning ofv is usually clear from
the context. We will ignore the FLR effects, and use t
expression for the particle perpendicular velocity

V'52V'@sin~j!ex1cos~j!ey#. ~60!

Finally, the perturbed perpendicular flow is

n0v1'5E V'd~X2r !
e

mc

]F0

]m H e

V2

]

]t E 1

c
V'•A' dj

2
e

V3

]2

]t2 E E 1

c
V'•A'dj djJ d6Z

5
2 ivn0e2B

m2c2V2 Axey1
v2n0e2B

m2c2V3 Axex

5
n0c

B2 E3B1
n0mc2

eB2

]E'

]t
. ~61!
AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html.
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It is obvious that theE3B flow does not contribute to the
perpendicular current. The perpendicular current is gener
by the ion polarization drift,

j5(
j

~en0v1'! j'
n0mic

B2 v2Axex . ~62!

The perpendicular Ampere’s law (¹3¹3A)'54p/cj'
gives:

ky
2Ax5

4pn0mi

B2 v2Ax , or v25ky
2vA

2. ~63!

This is the compressional Alfve´n wave. The key point of this
gyrokinetic version of the compressional Alfve´n wave is the
perturbed perpendicular current. ToO(ev), the perpendicu-
lar flow is theE3B flow, which gives no current. Therefor
we have to go toO(ev

2 ). The current to this order is th
current generated by the polarization drift in the perturb
electromagnetic field. We recall that the physical effect
the gyrocenter pull-back transformation in the Poisson eq
tion is the polarization density,7 and in the parallel Ampere’s
law is the skin depth current.11 What we have found out her
is the physical effect of the gyrocenter pull-back transform
tion in the perpendicular Ampere’s law—the polarizati
current. Actually, the polarization density in the Poiss
equation is also an effect of the gyrokinetic perpendicu
dynamics. It is easy to verify that keeping the solution ofS to
order O(ev

2 ) in the pull-back term of the Poisson equatio
gives the polarization density.

Heuristically speaking, to the leading order, the polari
tion drift is

vp5
mc2

eB2

]E'

]t
, ~64!

where higher order terms associated withvd•¹ have been
neglected. For the electrostatic modes and the shear Al´n
modes,

vp52
mc2

eB2

]¹'f

]t
, ~65!

and it is important in the Poisson equation. For the comp
sional Alfvén modes, the polarization drift is

vp52
mc

eB2

]2A'

]t2 , ~66!

and it is important in the perpendicular Ampere’s law.
As usual, the linear current response can be expresse

terms of the plasma susceptibilityx ~and equivalently the
dielectric tensore!. From this point of view, Eq.~62! can be
alternatively interpreted as

xxx52
4pn0mic

2

B2 . ~67!

In the above derivation, we have assumed thatev

[v/V!1 for the compressional Alfve´n wave to obtain the
solution for S. Since v;kyvA , when ky increases
sufficiently,36 v can become comparable toV. We note that
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the equation forS, Eq. ~42!, can be solved without the as
sumption thatev!1. In the current case, Eq.~42! is simpli-
fied into:

V
]S

]j
1

]S

]t
52e

V'–A'

c
5

e

c
V' sin~j!Ax . ~68!

This an ordinary differential equation forS, the solution for
which is

S5S eV'

cV
AxD cos~j!1 i v̄ sin~j!

~v̄11!~v̄21!
1c1ei jv̄, ~69!

wherev̄[v/V. As a choice of gauge,c1 is set to zero. This
is also becausec1ei jv̄ is independent of the linear drive, an
it corresponds to the initial condition. Therefore, for line
eigenmode analysis,c1 can be set to zero. Substituting th
solution for S into the pull-back transformation, we obtai
the perpendicular flow

n0v1'5E V'd~X1r02r !
e

cB

]F0

]m
~2V'Ax!

3Fsin~j!2
2sin~j!1 i v̄ cos~j!

~v̄11!~v̄21! Gd6Z

5
n0eAx

cm F S 2v̄2

2v̄211Dex1
i v̄

~v̄11!~v̄21!
eyG . ~70!

Obviously, the first term is the polarization flow; the seco
term is theE3B flow. This result is valid for general fre
quency. Because of the term2v̄211 in the denominator,
the E3B currents of ions and electrons do not cancel w
each other. It is easy to see that Eq.~70! recovers the low
frequency result whenv̄!1.

VI. PERPENDICULAR OHM’S LAW

The gyrokinetic perpendicular Ohm’s law is seldom d
cussed. The lack of a perpendicular Ohm’s law is fundam
tally due to the lack of perpendicular dynamics in the pre
ous gyrokinetic theory. The basic analytic formalism
perpendicular dynamics introduced can be used to deriv
perpendicular Ohm’s law. The single most important step
to obtain the perpendicular flow. In the normal procedu
the perpendicular current needs to be related to the first
pendicular moment of the gyrokinetic equation forf. But we
notice immediately that the* V' d3v operation on the gyro-
kinetic equation provides us with no information at all, b
cause all the quantities appearing in the gyrokinetic equa
are gyrophase independent. The result of this operatio
050. Therefore, deriving the gyrokinetic Ohm’s law esse
tially means obtaining an expression for the perpendicu
current from the gyrokinetic pull-back transformation. In th
section, we consider the gyrokinetic perpendicular Ohm
law for the shear Alfve´n modes (A'50).
AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html.
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First for the equilibrium,37

j0'5(
j

eE ~V'1vd!F0d~X1r02r !d6Z

'(
j

eE @V'F0r0•¹d~X2r !1vdF0d~X2r !#d6Z

5(
j

eE H 2
]

]xl
~V'nr0l !F01vdF0J d3V

5cF2¹3S b
P'

B D1
b

B
3S P'

¹B

B
2Pib3¹bD G

5cF b

B
3¹P'1S b3

¹B

B2 2¹3
b

BD P'1
Pi

B
¹3bG

5
c

B
@b3¹P'1~Pi2P'!¹3b# ~71!

where we have kept only the leading order FLR effect an

P'[(
j
E V'

2

2
F0 d3V,

~72!

Pi[(
j
E U2F0 d3V.

For the perturbed part,

n0v1'5E ~V'1vd! f d~X1r02r !d6Z

1E V'd~X1r02r !LGF0 d6Z, ~73!

where vd is neglected for theLGF0 part of the pull-back
transformation. For the first term, we have

E ~V'1vd! f d~X1r02r !d6Z

5
c

eBFb3¹E mV'
2

2
f d3V

1E mS U22
V'

2

2 D f d3V¹3bG . ~74!

Unlike the fluid approach, we do not introduce any closu
scheme to close the perpendicular and parallel energy
ment. In kinetic theory, this term is simply determined by t
distribution function solved for from the gyrokinetic equ
tion.

For the term* V'd(X1r02r )LGF0 d6Z, we have

LGF05
e

mc
Ai~X1r0 ,t !

]F

]U
1

e

mc

]S

]j

]F0

]m
. ~75!

We will keep terms up toO(ev
2 ) andO(r0k') in ]S/]j,

]S

]j
5

e

V S f̃2
1

c
UAĩ D2

e

V2

d

dt E S f̃2
1

c
UAĩ Ddj

5
e

V Fr01
iv

V
r0~ex sinj1ey cosj!G•¹S f2

1

c
UAi D ,

~76!
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where the curved geometry term ind/dt is neglected,

d

dt
[

]

]t
1vd•¹'

]

]t
. ~77!

Therefore toO(r0k'),

E V'd~X1r02r !LGF0 d6Z

5
e

mcE ]F0

]U
V'@d~X2r !r0•¹Ai1r0•¹d~X2r !Ai#

3d6Z1
e

B E ]F0

]m
V'd~X2r !F S f̃2

1

c
UAĩ D

2
1

V

d

dt E S f̃2
1

c
UAĩ Ddj Gd6Z. ~78!

The first term is obviously zero.

E V'd~X1r02r !LGF0d6Z

52
e

T E F0V'Fr01
iv

V
r0~ex sinj1ey cosj!G

•“f~X!d3V

52
e

Vm E F0

mV'
2

2T S e i j 32
iv

V
d i j D ]f

]xj
d3V ~79!

52
n0c

B F¹f3b2
iv

V
¹f G5

n0c

B
E'3b1

n0c

BV

]E'

]t
.

Finally, the perpendicular flow is

~n0v1'! j5H c

eBFb3¹E mV'
2

2
f d3V

1E mS U22
V'

2

2 D f d3V¹3bG J
j

1
n0 j c

B
E'3b1S n0c

BV D
j

]E'

]t
. ~80!

Clearly the second term in above equation is theE3B drift
term, and the last term is the polarization drift term. T
macroscopic flow of the plasma is that of the ions; to t
leading order it is

v1'5
c

B
E'3b. ~81!

This is the perpendicular component of the ideal MH
Ohm’s law. One would argue that this equation can be w
ten down directly from theE3B drift. However, we empha-
size that while this argument is physically correct, but t
result here is systematically derived from the gyrokine
theory. Our rigorous derivation confirms that, to the lead
order, theE3B drift is indeed the plasma flow. However, th
AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html.
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E3B drift does not generate any current. The perpendicu
current comes from the parallel and the perpendicular ene
moment and the polarization drift.

j1'5(
j

H c

B Fb3¹E mV'
2

2
f d3V1E mS U22

V'
2

2 D
3 f d3V¹3bG J

j

1(
j

S en0c

BV D
j

]E'

]t
. ~82!

VII. BERNSTEIN WAVE

In this section we recover the Bernstein wave and us
as a second example of how to apply the general the
developed here to related problems.

We consider an electrostatic wave propagating in a
mogeneous magnetized plasma withv;V. Let B05B0ez

andk5kex . The solution for the linear gyrokinetic equatio
is degenerate becauseki50,

f 52
e

T
F0

2kiU

v2kiU
f50. ~83!

In this special case,f, the gyrophase independent part of t
distribution function, does not play any role, and we focus
the gyrophase dependent part which is described by the ‘‘
tribution function’’ S. The equation forS is

$S,HE0%5V
]S

]j
1

]S

]t
5ef̃~X1r0!

5eFer0•¹2J0S r0•¹

i D Gf. ~84!

That is,

]S

]j
2 i v̄S5

e

V
@eirk cosj2J0~rk!#f, ~85!

wherev̄5v/V. Using the identity

el cosj5 (
n52`

`

I n~l!einj, ~86!

we solve forS,

S5
e

V i v̄
J0f1

e

V (
n52`

`
I n~ irk!

i ~n2v̄ !
einjf. ~87!

We need only]S/]j in the pull-back transformation,

]S

]j
5

e

V (
n52`

`
nIn~ irk!

~n2v̄ !
einjf. ~88!

The density response comes only from the pull-back tra
formation sincef 50.

n15E J0f d3v1E d~X1r02r !
e

mc

]S

]j

]F0

]m
d6Z

~89!

5E @er0•¹d~X2r !#
2e

T
F0 (

n52`

`
nIn~ irk!

~n2v̄ !
einjf d6Z.

Using the facts that
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E @er0•¹d~X2r !#Q d6Z5E d~X2r !e2r0•¹Q d6Z, ~90!

and

E
0

2p

ei ~m1n!j dj5dm,2n2p, ~91!

we have

n15
2p

~2pT/m!3/2E 2n0ef

T
expS 2

v i
21v'

2

2T/m D
3 (

n52`

`
nI2n~2 irk!I n~ irk!

~n2v̄ !
v' dv i dv' . ~92!

The following properties of the Bessel function are needed
finish the integral:

I n~x!5 i 2nJn~ ix !,

J2n~x!5~21!nJn~x!5Jn~2x!, ~93!

E
0

`

te2pt2Jn
2~at!dt5

1

2p
e2a2/2pI nS a2

2pD .

Carrying out the algebra, we obtain

n15n0

ef

T (
n51

`
2n2

S v

V D 2

2n2

expS 2
k2T

V2mD I nS k2T

V2mD . ~94!

Finally, the Poisson equation2¹2f5( j4p(en1) j gives the
dispersion relation,

15(
j

4pn0e2

Tk2 (
n51

`
2n2

S v

V D 2

2n2

expS 2
k2T

V2mD I nS k2T

V2mD .

~95!

This is the Bernstein wave. As we can see,38 this derivation
from gyrokinetic theory is quite different and more straigh
forward, compared with the conventional method
integrating the Vlasov equation along the particle’s unp
turbed orbit in the particle coordinate.39

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, the theory for gyrokinetic perpendicul
dynamics is developed by introducing an extra ‘‘distributi
function’’ and a gyrokinetic equation for it. Using thi
model, we have recovered the compressional Alfve´n wave
from a gyrokinetic approach. From the viewpoint of gyrok
netic theory, the physics of the compressional Alfve´n wave
is the polarization current at orderO(ev

2 ). Therefore, in a
low frequency gyrokinetic system, the compressional Alfv´n
wave is naturally decoupled from the shear Alfve´n wave and
the drift wave. In the gyrocenter coordinates, the gyroph
dependent parts of the distribution functionS and f̃ are de-
coupled from the gyrophase independent partf̄ . The infor-
mation aboutS is important, not only for waves at the cyclo
tron frequency, but also for low frequency waves, such as
compressional Alfve´n wave.S and the corresponding gyro
kinetic equation are responsible for the perpendicular
AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html.
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namics. They produce the polarization density in the gyro
netic Poisson equation and the polarization current in
gyrokinetic perpendicular Ampere’s law. Introducing the g
rokinetic perpendicular dynamics also extends the gyro
netic model to arbitrary frequency modes. As an exam
the Bernstein wave is recovered from the gyrokinetic mod
The gyrokinetic perpendicular dynamics uncovered here
phasizes that the spirit of gyrokinetic reduction is not av
aging out the gyromotion, but rather decoupling the gyrom
tion from the particle’s gyrocenter orbit motion. Whe
necessary, the information aboutS can always be obtaine
easily.

Only linear theory is presented in this paper. Carryi
out the analysis to the second order will give the nonlin
theory for small amplitude perturbations.12,14 Since the con-
struction of the gyrocenter coordinates depends on the
turbed field, the gyrocenter coordinates have to be define
the second order as well. As a result, the gyrokinetic eq
tion for Swill become nonlinear. However, the basic featur
of the linear gyrokinetic perpendicular dynamics are s
valid for nonlinear theory. For example, the gyrophase
pendent and gyrophase independent parts ofF are still de-
coupled. The nonlinear gyrokinetic equation is

$F,HE%5
]F

]t
1$F,H%5

]F

]t
1Ẋ

]F

]X
1U̇

]F

]U
1 j̇

]F

]j
50.

~96!

Let F5F̄1F̃ andF̄5^F&. SinceẊ, U̇, andj̇ are gyrophase
independent, we have

$F̄,HE%5
]F̄

]t
1$F̄,H%5

]F̄

]t
1Ẋ

]F̄

]X
1U̇

]F̄

]U
50, ~97!

and

$F̃,HE%5
]F̃

]t
1$F̃,H%5

]F̃

]t
1Ẋ

]F̃

]X
1U̇

]F̃

]U
1 j̇

]F̃

]j
50.

~98!

If ev5v/V!1, it is easy to prove thatF̃50 to any order in
ev .

On the other hand, the nonlinear gyrokinetic theory a
the nonlinear gyrokinetic perpendicular dynamics can be
veloped, without the assumption of small perturbations,
rectly from the guiding center theory for the time-depend
electromagnetic field.20 The difference between the guidin
center coordinates and the gyrocenter coordinates is not
essary for this approach, and the perturbations can be
trary as long as the guiding center coordinates exist. A s
cessful theory for nonlinear gyrokinetic perpendicu
dynamics is the key to nonlinear gyrokinetic MHD and
gyrokinetic model for nonlinear cyclotron waves. Recent d
velopment in perturbation methods for Hamiltonian dyna
ics, such as the Berry–Hannay phase40–45 and the geometric
perturbation,46 may be helpful for the development of a no
linear gyrokinetic theory, especially for nonlinear gyrok
netic perpendicular dynamics.
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APPENDIX: PHASE SPACE LAGRANGIAN LIE
PERTURBATION METHOD

The study of dynamics from the Hamiltonian point
view provides us with systematic methods to deal with co
plicated dynamic structures, especially the perturbat
methods which have great value in celestial mechanics
in guiding center dynamics of charged particles in an el
tromagnetic field. Hamiltonian dynamics47,48 is given by a
symplectic structurev and a Hamiltonian functionH on an
even dimensional manifoldM2n.

By definition, the symplectic structurev is a closed non-
degenerate differential two-form onM2n:

dv50, and
~A1!

;jeTxM and jÞ0, 'heTxM such thatv~j,h!Þ0.

The symplectic structure as a special two-form establishe
isomorphism between the tangent spaceTxM and the co-
tangent spaceTx* M at anyx on M, that is, for anyjeTxM ,
we havev(•,j) which is an element inTx* M , and vice
versa. Denoting the isomorphism fromTx* M to TxM asI, we
obtain a correspondence between functions onM and vector
fields onM2n:

Xg5I dg,
~A2!

dg5v~•,Idg!5v~•,Xg!.

Therefore, the symplectic structure generates an algeb
structure for functions onM—the Poisson bracket,

$ f ,g%[v~Xg ,X f !. ~A3!

It can be shown that the Poisson bracket is skew sy
metrical and satisfies the Jacobi identity~from dv50!:

$ f ,g%52$g, f %,
~A4!

$$ f ,g%,h%1$$h, f %,g%1$$g,h%, f %50.

The set of functions onM with the Poisson bracket is thus
Lie algebra.

Usually we want to solve for the Hamiltonian flow co
responding to a Hamiltonian vector fieldXH5I dH. The
Hamiltonian flowf(t,x) is an one parameter group of tran
formations onM2n satisfying

f~0,x!5x,

f~s,f~ t,x!!5f~s1t,x!, ~A5!

d

dtU
t50

f~ t,x!5XH5~ I dH !x .

For such a flow we have
AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html.
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d

dtU
t5s

f~ t,x!5
d

d~ t2s!
U

t2s50

f~ t2s,f~s,x!!

5~ I dH !f~0,f~s,x!!5~ I dH !f~s,x! . ~A6!

Now the dynamics of a functionF on M under the Hamil-
tonian flow is simply given by the Poisson bracket betwe
F andH,

$F,H%5v2~ I dH,I dF !5~ I dH !dF

5
d

dtU
t50

f~ t,x!¹F5
d

dtU
t50

F~f~ t,x!!. ~A7!

Similarly, we have

d

dtU
t5s

F~f~ t,x!!5
d

dtU
t2s50

F~f~ t2s,f~s,x!!!

5$F,H%~f~s,x!!. ~A8!

In a given local coordinate system,

]g

]xi 5v i j Xg
j ,

Xg
i 5~v21! i j

]g

]xj , ~A9!

$ f ,g%5v i j Xg
i X f

j 5v i j ~v21! i l
]g

]xl ~v21! jm
] f

]xm

5~v21!ml
] f

]xm

]g

]xl .

For many physical problems, the symplectic structu
and the Hamiltonian function are given by the Poincar´–
Cartan form

g5ĝ1H dz, ~A10!

which is a one-form on the space (M2n,t). H is the Hamil-
tonian function. The symplectic structure onM2n is obtained
by the exterior derivative of the one-formĝ,

v5dĝ. ~A11!

For a charged particle moving in an electromagne
field, the phase space is the extended eight-dimensi
space (v,r ,w,t). The Poincare´–Cartan one-form~phase
space Lagrangian! is:

gE5Fe

c
A~r ,t !1mvG•dr2w dt2F1

2
mv21ef~r ,t !2wGdz.

~A12!
It is easy to show that starting from this one-form, we c
recover the usual motion equation for a charged particle
an electromagnetic field.

One of the most useful features of the Hamiltonian f
malism for dynamic systems is the systematic techniq
available to deal with a perturbed system. When the sys
is not far away from a preferred situation which could ha
for example, an exact solution or some symmetry propert
we can reconstruct coordinate system such that the g
properties of the unperturbed system can be utilized.
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The coordinate transformation for the phase spaceM2n

can be represented by a map in theR2n space~see Fig. 3!,

T:x→ x̄. ~A13!

From the viewpoint of Lie perturbation methods,49,50

such a map is generated by the flow due to a vector fieldG.
This flow can be formally written as

gG~ t,x!5etGx. ~A14!

The coordinate transformationT is the flow mapping when
t51,

T5eG. ~A15!

Perturbation theory considers transformations which are n
identity. The vector field is small. Using the natural sm
parameter existing in the problem,e, we express the coordi
nate transformation as

T5eeG. ~A16!

The push-forward and pull-back transformations are the
fore

T* 5e2eLG,
~A17!

T* 5eeLG,

whereLG is the Lie derivative. The vector fieldG is chosen
such that in the new coordinate system, the dynamic st
ture has some desired properties. However, it is gener
only possible to satisfy these desired properties toO(e). To
go to higher order, we can introduce a series
transformations,50

Tn5eenGn n51,2,̄ . ~A18!

Gn is chosen to give the desired properties toO(en). There-
fore the overall transformation is

T5¯T3T2T1 . ~A19!

Its push-forward, pull-back, and their inverses are

T* 5¯T3* T2* T1* , T
*
215T1*

21T2*
21T3*

21
¯ ,

T* 5T1* T2* T3*¯ , T* 215¯T3*
21T2*

21T1*
21.

~A20!

FIG. 3. Coordinate transformation as a map inR2n.
AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html.
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When x is transformed tox̄5Tx, the Poincare´–Cartan
one-formg is transformed toḡ5T* 21g1dS, whereS is an
arbitrary gauge function. AddingdS to ḡ does not change
the particle dynamics because the symplectic structure isdg
andd dS50. The expression ofḡ in terms ofe can easily be
calculated,50

g̃05g01dS0 ,

ḡ15g12L1g01dS1 ,
~A21!

ḡ25g12L1g11~ 1
2L1

22L2!g01dS2 ,

A.

These equations are solved for the vector fieldGn and the
gauge functionSn order by order when the desired requir
ment forḡn is imposed order by order. The Lie derivatives
the above equations can be simplified by use of the ho
topy formula

Lva5 i v~da!1d~ i va!, ~A22!

where i vb is the interior product between the vector fieldv
and the formb. d( i va) can be further absorbed intodS. For
example, we will use the following expressions forḡ1

ḡ15g12 i G1
~dg0!1dS1 . ~A23!
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