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Gyrokinetic perpendicular dynamics, an important component not systematically considered in
previous gyrokinetic theories, is identified and developed. A “distribution functi@énd its
governing gyrokinetic equation are introduced to describe the gyrokinetic perpendicular dynamics.
The complete treatment of the perpendicular current rendered by the gyrokinetic perpendicular
dynamics enables one to recover the compressional Alivave from the gyrokinetic model. From

the viewpoint of gyrokinetic theory, the physics of the compressional "Alfveave is the
polarization current at second order. Therefore, in a low frequency gyrokinetic system, the
compressional Alfve wave is naturally decoupled from the shear Atfugave and drift wave. In

the gyrocenter coordinates, the gyrophase dependent parts of the distribution figwatidr are
decoupled from the gyrophase independent gartntroducing the gyrokinetic perpendicular
dynamics also extends the gyrokinetic model to arbitrary frequency modes. As an example, the
Bernstein wave is recovered from the gyrokinetic model. The gyrokinetic perpendicular dynamics
uncovered here emphasizes that the spirit of gyrokinetic reduction is to decouple the gyromotion
from the particle’s gyrocenter orbit motion, instead of averaging out the gyromotion1999
American Institute of Physics.
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I. PHYSICS OF GYROKINETIC PERPENDICULAR kinetic mode{?>~?8has proved to be an effective method to
DYNAMICS study electrostatic turbulence and the associated transport
phenomena. Electromagnetic gyrokinetic models have also
The electrostatic gyrokinetic model was originally de- heen used to study drift waves, shear Atiwgaves, and the
rived by Rutherford and Friemaand Taylor and Hastfdor  coupling between thert? 18 However, previous gyrokinetic
low frequency modetw<()). Since then, gyrokinetic theory theories using the Lie perturbation method have not been
has been significantly advanced and its importance for maggple to recover the well-known compressional Ativeave.
netized plasmas, especially for magnetic fusion, has beenhis can be attributed to the lack of a systematic treatment
greatly appreciated. The gyrokinetic system was first exfor the plasma perpendicular response in gyrokinetic models.
tended to electromagnetic modes by Cattal’® using the  For a kinetic system, the kinetic equation can be viewed as a
guiding center coordinatésnd independently by Antonsen theoretical description for the response of the plasma, in
et al® Nonlinear electrostatic gyrokinetic equations for smallterms of particle density and flow, to the electromagnetic
amplitude perturbations were then derived by Frieman angfeld. When the Maxwell equations are included, the system
Chen? Lee/ and later by Dubiret al® and Yanget al® us-  of equations is complete. Since the Maxwell equations are
ing the Hamilton Lie perturbation method, and by Hafim aways the same in a chosen coordinate system, the reason
using the phase space Lagrangian Lie perturbation methoghat the compressional Alfmewave is not recoverable from
Recently, Hahnet al** and Brizard*~** developed the first previous gyrokinetic models must lie in the gyrokinetic
nonlinear electromagnetic gyrokinetic system. Meanwhile, &quation itself. In this paper, we develop the perpendicular
gyrokinetic system valid for both long wavelength and shortgyrokinetic dynamics, an important component not system-
wavelength modeéwithout using the ballooning representa- atically considered in previous gyrokinetic theories. A “dis-
tion) was investigated by Qirt al.>~*® The importance of  tripution function” S and a gyrokinetic equation for it are
gyrokinetic Maxwell equations was later realized. L&est  introduced to describe the gyrokinetic perpendicular dynam-
discovered the difference between the gyrocenter density angs. To systematically derive our electromagnetic gyrokinetic
the particle density in the Poisson equation, which was fursystem’ and especia”y the gyrokinetic perpendicu|ar dynam_
ther studied by Dubiret al® The gyrokinetic effect in the ics, we use the phase space Lagrangian Lie perturbation
parallel Ampere’s law was then investigated by Hahmmethod.
etal The complete treatment of the perpendicular current ren-
Parallel to Littlejohn’s Hamiltonian method for guiding dered by the gyrokinetic perpendicular dynamics enables us
center motiort’~* the gyrokinetic formalism using the Lie to recover the compressional Affvavave from the gyroki-
perturbation method has provided theoretical treatmengetic model. It turns out that the physics of the perpendicular
which is more systematic and comprehensive, and has beeurrent for the compressional Alfaavave is the polarization
applied to many important problems in magnetic fusiongrift, which is of the orderO(e?), where e, =w/Q. The
plasma. For example, particle simulation based on the gyracompressional Alfe wave in tokamaks usually has higher
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frequency than the shear Alfwevave and the drift wave. It quency is comparable to the cyclotron frequengy;-1, we
can cause numerical instabilities in simulations targeted atan still take advantage of the gyrocenter coordinates and
the shear Alfva waves and the drift waves. In fluid simula- simplify the kinetic system. On the other hand, information
tions, implicit schemes are often required to eliminate thesabout the gyromotion is obviously important for cyclotron
numerical instabilities. The recovery of the compressionalvaves. How does the gyrokinetic model provide this infor-
Alfvén wave in the gyrokinetic model shows that, in the low mation? It will be shown that, for arbitrary frequency linear
frequency gyrokinetic system, the compressional Aifve analysis and nonlinear low frequency analysis, the distribu-
wave is naturally decoupled from the shear Ativvaves tion function in the gyrocenter coordinate system does not
and the drift waves. Therefore, implicit schemes are not necdepend on the gyrophase. All the information about the gy-
essary for gyrokinetic simulations. romotion is contained in the “distribution functionSintro-
Introducing the gyrokinetic perpendicular dynamics alsoduced in the construction of the gyrocenter coordinates. We
extends the gyrokinetic model to arbitrary frequency modesemphasize that the spirit of gyrokinetic theory is to decouple
The gyrokinetic theory for arbitrary frequency modes wasthe gyromotion from the particle’s gyrocenter orbit motion,
first studied by Chen and Ts& It was then investigated instead of averaging it out. As a matter of fact, for the com-
by Leeet al.® Chiu3 Brizard}* and applied to the problem pressional Alfv@ wave in the framework of gyrokinetic
of fast wave cyclotron resonance by Lashmore-Davies antheory, information about the gyromotion is important. If we
Dendy®*~* The basic method was based on the point ofsimply average out the gyromotion, the compressional Al-
view that averaging over gyrophase is equivalent to takingven wave will be “averaged out” as well.
the zeroth component of the Fourier series in gyrophase, and In the gyrocenter coordinate system, the gyrokinetic
keeping all the Fourier components extends the gyrokinetieguation consists of two components, the gyrokinetic equa-
model to arbitrary frequend¥. However, all of these theo- tion for f and that forS, and it is fully equivalent to the
retical models use the guiding center coordinates in whichv/lasov equation. To be accurate, the gyrokinetic equation
the particle’s gyromotion is not decoupled from the rest of(including both componentss the Vlasov equation in the
the particle dynamics when time-dependent perturbations exgyrocenter coordinate system. The Vlasov equation, in its
ist in the system. Therefore, Fourier decomposition in gy-general(geometri¢ form {F,Hg} =0, is coordinate indepen-
rophase has to be carried out for the field variables, the Vladent. The simplest and often-used coordinate system for the
sov equation, and the Maxwell equations. This results in &D phase space is the particle coordindieg) (representing
coupled equation system for all the gyrophase harmonics. Oall coordinate systems with decoupled configuration space
the other hand, keeping all the gyrophase harmonics and tteordinates and velocity space coordinatess different
coupling terms guarantees that the coupled system is fullghoices of the 6D phase space coordinate system, the guiding
equivalent to the original Vlasov equation and capable oktenter coordinate systenX(U,u,&) and the gyrocenter co-
recovering all the results obtained by the conventionabrdinate systemX,U,u,&) have the same ability as the par-
Vlasov—Maxwell method, such as the compressional Alfve ticle coordinate system to describe the Vlasov equation. It is
wave, which has not been recovered by other gyrokinetigmportant to notice that the previously derived gyrokinetic
approaches. In our approach, we use the gyrocenter coordéquations forf alone is not the Vlasov equation in the gyro-
nates instead of the guiding center coordinates. The gycenter coordinate system. Only when the gyrokinetic equa-
rophase independent part and the gyrophase dependent ph for Sis also included do we obtain the Vlasov equation
are naturally separated in the gyrocenter coordinates. Consgr the gyrocenter coordinate system. This is one of the mo-
quently, the mathematical formalism is much more transpartivations of this paper. From this point of view, Chen and
ent and general. For example, the methods developed hemgaj's equation system is the representation of the Vlasov
apply to arbitrary wavelength modes. We do not assume thgquation in the guiding center coordinate if all the gyrophase
ballooning representation; the background inhomogeneitarmonics and coupling terms are kept. A single gyrokinetic
can be treated completely. In a sense, the extension of gyrequation forf is not the Vlasov equation in either the guiding
kinetic theory to arbitrary frequency rendered by the gyroki-center coordinate system or the gyrocenter coordinate sys-
netic perpendicular dynamics reported here can be viewed ggm.
the Hamiltonian(geometrig counterpart for the theory initi- Even though all coordinate systems are geometrically
ated by Chen and Tsai. equivalent, the algebra involved is different depending on the
The insight into the gyrokinetic perpendicular dynamicsspecific problems being studied. For applications in magne-
uncovered here clarifies the understanding of gyrokinetic refizeq plasmas, the advantage of the gyrocenter coordinate
duction. What gyrokinetic theory offers is a simplified ver- system lies at the fact that in this coordinate system the fast
sion of the Vlasov—Maxwell system by utilizing the fact that tjme scale gyromotion is decoupled from the particle’s gyro-
the particle’s gyroradius is much smaller than the scalg.enter orbit dynamics. For low frequency electrostatic modes
length of the magnetic fieldeg .5, =|p/Le,+5,[<1. AS  and shear Alfva modes, the gyromotion is not important
long aseg 5, is small, we are able to construct a gyrocenterand is naturally decoupled from the system as if it com-
coordinate system in which the particle’s gyromotion is de-pletely “averaged out.” On the other hand, general fre-
coupled from the rest of the particle dynamics. The existencguency mode and compressional Alfveodes can be easily
of the gyrocenter coordinates does not depend on the modecovered by including the gyrokinetic perpendicular dynam-
frequency directly. Therefore even when the mode fre-cs in the gyrocenter coordinate system, since the gyrocenter
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orbit motion is independent of the gyromotion. The currentare two perpendicular directions in the configuration space,
numerical codes and particle simulation codes based on gynd (g, e, ,b) is a right-handed orthogonal frame.

rocenter orbit integration for low frequency electrostatic and In the extended guiding center coordinates
shear Alfven mode can be extended to general frequency byX,U,u,&,w,t), the extended phase space Lagrangian

appropriately adding in the component of perpendicular dyis??-?1:12:14
namics. Y H-d
The paper is organized as follows. In Secs. II, Ill, and 7E~ YE~ TEHT

IV, the gyrokinetic system is developed using the phase e mc mc
space Lagrangian Lie perturbation method, the mathematical =|zA+mMUb—u-—-W |- dX+-—udé—wdt
background of which is briefly introduced in the Appendix.
In Sec. Il, we construct the gyrocenter coordinates by a sym-  —(H—-w)dr, 3
plectic transformation from the guiding center coordinates
Then, in Sec. lll, the Gyrokinetic Maxwell equations are
discussed. Irl S_ec_. IV.’ the gyr_okipetic equati_ons, inCIUqus the parallel velocityu is the magnetic momeng, is the
that for the “distribution function” S responsible for the

L . . ) gyrophase angle, and
gyrokinetic perpendicular dynamics, are developed in the gy-
rocenter coordinates. As examples of many possible applica-
tions of the gyrokinetic perpendicular dynamics, the com-
pressional Alfve wave and the Bernstein wave are ) i o
recovered, respectively, in Secs. V and VII, and the Gyroki-t1 ande; are unit vectors in two arbitrarily chosen perpen-
netic perpendicular Ohm’s law for shear Alfvavaves is dicular directions, ane; and e, are perpendicular to each

derived in Sec. VI. In the last section, we summarize and’tn€r- The regular phase space is extended to include the
discuss future work. time coordinate and its conjugate coordinate enengy ye

gives the extended symplectic structukéz=H—w is the
Il. SYMPLECTIC GYROCENTER TRANSFORMATION extended Hamiltonian, anid is the regular Hamiltonian de-
To establish our gyrokinetic system for arbitrary wave-fined as
length, electromagnetic perturbations, we start from Little-

where species subscripts are temporarily suppre¥sedthe
configuration component of the guiding center coordindte,

b
=R+5(b-Vxb), R=(Ve)-e, b=B/B. (4

2

john’s guiding center theory. When H= m2U + uB.

p

€, =<1, (1) The corresponding Poisson bracket is obtained by inverting

Bo the symplectic structurgy;; ,****?
we can construct a set of noncanonical phase space coordi-
nates in which the gyromotion is decoupled from the rest of F g1 = i(i 96 _F &) — C_b* VF+Wi)
the particle dynamics to any order é . This special set of mcl d¢ du  du 9E)  eBj 23
coordinates is called the guiding center coordinates. The un- 9G B* I9F\ 9G
derlying method is to look at the perturbation of the phase X VG+W5_§ + m—a*-[(VFJrWO?—g)W

|

space Lagrangian Wheq30 is small, and introduce a near

identity coordinate transformation such that, in the new co-
ordinate system, the gyromotion is decoupled. We will sum-
marize the basic results without derivation. The mathemati-
cal background of this theory is briefly introduced in the Where
Appendix. cmuU
The equilibrium is assumed to be magnetostatic. The B*=B+ TVXb’ B =h-B*. (6)
guiding center transformatiofigc, which transforms the
particle coordinate into the guiding center coordinate, isThe guiding center coordinate system in a static magnetic
given by02112.14 field is illustrated in Fig. 1.
When the perturbed electromagnetic field is introduced,
the extended phase space Lagrangian is perturbed
accordingly**?

dG\ dF dF G  IJF 4G
[verw )|+ | ®

9E)aU| \ow gt ot ow

X=X_po,

Cc
U=UH+6/_L0b'VXb+ O(féo),

Ye= Yeot Ye1,
_ mc Uy b V b O 2 (2) e (7)
H=HoT g Hog DV XDTO(e,), ve1=| gAuTeeXoD) d(TgeX) | —edy(TeeX,Dd,
&= H—PO'R—?:—é(f’of’o—\l\lYVb*' O(Eéo)' vyhereTgé is the inverse of the guiding center transforma-
tion:
where &,v,,v, ,6) are the usual local particle coordinates. TZIX=X+ pot pit+ O(€2) ®)
GC™M 0 1 B/

po, defined in particle coordinates, is the usual gyroradius.
is chosen such that, = —e/|e|(g,sin6+e, cosé). g ande,  where
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(extendedl “guiding center” coordinate system in an equi-
librium magnetic field. When the time-dependent electro-
magnetic field is introduced, we use tfextendedl “gyro-
center” coordinate systerd=(X,U,u,& w,t) to describe

Gy the gyrocenter motion. Among other things, the most well-
known difference between the guiding center motion and the
gyrocenter motion is the polarization drift motion due to the

X
3 e time-dependent electrical perturbation. We are following
Brizard'? in using the terms “gyrocenter” and “guiding cen-
P x ter” to distinguish these two different coordinate systems.
v For the transformation
7'=(e%2)'~Z'+Gi(2), (12
FIG. 1. Guiding center coordinate system. .
the leading order transformed extended phase space La-
grangian is:
c /2m — . A —
Po=~\/ BMIA’O- (9) Ye1= Ye1— i gWeo T dS= yg1—Hg  d7, (13
e

. wherewgo=dvygq, Sis the gauge function, angwgg is the
(See Fig. 1. po is the unit vector pointing from the guiding interior product between the vector figBiand the two form
center to the particle’s physical position, apdis the next wgo. There are several ways to maﬁ@ and ﬁEdT qy-
order correction. To derive the linear gyrokinetic equation,ropr1ase independent. We will chooSeand S such that the

we usually do not need higher orders of the guiding centefansformation is symplectic, that is, there is no perturbation
transformation, because the guiding center transformation i§p, the symplectic structure

the transformation from the particle “physical coordinate” R
in an equilibrium magnetic field to the “guiding center co-  Ye1=0. (14)

ordinate” in the same equilibrium magnetic field. No per- other nonsymplectic transformations are also possible. Gen-
turbed field is involved in this transformation. However, for erally nonsymplectic transformations are more algebraically

nonlinear gyrokinetic formalisms, the background and periqyolved. We will use the symplectic transformation
turbed fields cannot be separated very well; therefore it i?hroughout this paper.

necessary to keep the term. Our current formalism is a This symplectic transformation will transfer the pertur-
linear one. The leading order expression, bation into the Hamiltonian. Since we choose not to change
TgéX= X+ po, (10) the time variable, G'=0. Other components @ are solved

. N for from yg;=0:
will be sufficient for our purpose.

In tokamak geometryl ;~R,. The backgroundequi- x___C € _ * IS
librium) FLR (finite Larmor radiu} effect is represented by G eBy b CA1+VS mB; JU +O(es),
the small parameteeg and ignored in linear gyrokinetic .
theory. Important FLR effects come from the perturbed mag- U_ B -(EA +VS|+0(eg)
netic field whose wavelength could be much shorter than the mBf \c'*t 87
scale length of the equilibrium structure and could be com- S
parable to the particle gyroradius. This FLR effect is repre- Guzi(EAl, @Jr ’9_) (15)
sented by the parameter;=|kp|. In general, we keep the mcic 23
) 2
LR sfectson e perurhed el 10 at et s (o, 5]
p gd(TgcX), : =" melc™Monton (€s),
e Ipo
7E1:EA1(X+Po,t)' (1+Vpg)-dX+ mdﬂ GW——aS
gt
J
+ ai;dg —ep1(X+pg,t)dr. (11)  The transformed Hamiltonian is

The essence of the Lie perturbation method is to introduce a ﬁEl: Hg,— G &HIEO +GY= e¢1(>7+ Po.t)
near identity transformation from the equilibrium guiding 24
center coordinateg = (X,U, u,§,w,t) to the gyrocenter co- e _
ordinatesZ=(X,U, 1, w,t) when the perturbed field is — g ALX+po,t)-{X+po,Heo} ~{S,Heo},  (16)
present such that the transformed extended phase space La-

grangiany can be gyrophase independent. in which

We emphasize that there are three different coordinate - v

systems appearing in our formalisrtx,v) is the particle {X+po,Heo} =V+va, (a7
“physical”’ coordinate systemZ=(X,U,u,&,w,t) is the  where
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V=V, +Ub, V,={pg.Heo}. (18

In the calculation related to the gyrocenter transformation,
we will only keep the lowest order in terms ef, because Ampere’s law is
the background FLR effects normally are not important.

Here we encounter the second choice in the process of vy (vxA(r,t))= 4_772 eJ d3wi(r,v 1), (24)
constructing gyrocenter coordinates. We choose C 7

f d3vf(r,v,t)=fdGZ[Tng](z,t)a(Tgéx—r). (23)

— — —e — where
Hel= e¢1(X+vat)_V'EAl(x+pOyt) , (19
3 _ 6 * —1y
where( ) represents the gyrophase averaging operation. ThiJ dAwi(r.v,b) Jd 2V D Teyf 12,0 8(TeeX =)
leads to the equation determining the gauge funcBon (25)
S In the above equationsd®Z is understood to be
{SHeo}=0Q aEt ot K'{XyHEO}"_ 50 tU-Heol (B /m)d3X dU du d¢. T%, is the pull-back transformation,

which transforms the perturbed distributiérin the gyro-
-~ — e— — (20 center coordinates into that in the guiding center coordinates.
=€¢h1(X+po,t) = cV-Ay(X+po, 1), Tol is the inverse off o¢ that transforms the particle physi-
I — cal coordinatesr(v) into the guiding center coordinates. We
where ¢,(X+pg,t) andV-A(X+ py,t) are the gyrophase assume the guiding center transformafigf: and the corre-
dependent parts of,(X+pg,t) and V-A;(X+pg,t), re-  sponding pull-back transformatioRg., and the gyrocenter

spectively: transformationTgy and the corresponding pull-back trans-
% (X — (X X formation Tg, are one—one onttbijective). Generally for a
d1(X+pg,t) = d1(X+pg,t) —(P1(X+po,1)), macroscopic quantity(r) in the particle coordinates, we

o L o (21 havdo012.:8.11
V-AL(X+po,t) =V-Ar(X+po,t) —(V-Ay(X+po,1)).

Further study in the forthcoming sections will reveal the ~ Q(r)= f Q(r,v)fp(r,v,t)d%
fundamental roles oflg; andSin many unexplored area of (26)
gyrokinetic theory. In particular, we will see th&tis the B _ 6
central piece of the theory for arbitrary frequency modes, = | dx=nQ2)tp(z)d"z.

Ic;lovrvnpressmnal Alfve waves, and the gyrokinetic Ohm'’s In the guiding center coordina=(X,U  .£),
_Since the transformation we have chosen is symplectic, .1 1 6

ye1=0, the Poisson bracket in the gyrocenter coordinates is Q(r)ZJ [Tec QUZ)foc(Z,t)8(TgeX—r)d°Z. (27)

the same as that in the guiding center coordinates, which is _ )

given by Eq.(5). After obtaining the desired gyrocenter co- Replacingfcc(Z,t) by its pull-back from the gyrocenter co-
ordinate, we will “push” objects on the original particle °rdinate, we get

coordinates onto the new coordinates. The objects of physi-

cal interest here are the Maxwell equations and the Vlasov Q(F)If [T&c ' QU TEyfoyl(Z,1) S(TgeX—1)d°Z.
equation. (29)

We will useA and ¢ to notate the perturbed field here- . )
after; the subscript “1” will be dropped. Unless clarity re- 1he pull-back transformation from the gyrocenter coordi-
quires us to use the barred notation, we will also drop thé'ates to the guiding center coordinates is easily obtained
bars for the gyrocenter coordinates hereafter, and us&om the expression foG given by Eq.(15),

Z=(X,U, u, & to denote the 6D gyrocenter coordinates. TEF=F+LgF

Il. GYROKINETIC MAXWELL EQUATIONS b
=F— =X

Before introducing the gyrokinetic equations, we look at B
the gyrokinetic Maxwell equations. The gyrokinetic Maxwell
equati_ons are as important_ as the gyquinetic equation_itse_lf. — EA. — + e +0(ep), (29)
The differences between different versions of the gyrokinetic § §lop
equation can usually be resolved when the correspondingherel gF represents the Lie derivative Bfwith respect to
gyroklnguc Maxwgll equations are taken into account in thethe vector fieldG. The pull-back transformatiofi, lies at
appropriate coordinate systems. the center of the gyrokinetic theory. Lefirst discovered its

The Poisson equation is physical effects for electrostatic modes. By this discovery,

19 several basic difficulties in both gyrokinetic theory and gy-

—V2¢(r,t)=4772 EJ d3vf(r,v,t)+EEV~A(r,t), (22)  rokinetic simulation are solved. This problem was further
! studied by Dubinetal,’ Hahm etal,’* Hahm® and

where Brizard!? To be historically complete, we note that one

c e c oF
A+-VS|.VF+ —Db-|A+-VS|—
e mc e ouU

e

e  dpy as} JF
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piece of the pull-back transformations appeared in the gyro- - (36)
kinetic equation for ballooning modes derived by Catto
et al® and Antonseret al® in the form

e JF U A
me I d—— A

The distribution functiorf only contains the gyrophase inde-
pendent part, and the gyrokinetic equation is valid for arbi-
Jot LR ] trary frequency and wavelength as long as the gyrocenter
o k,c ! coordinates exist.
In the coordinates X,U,u,¢,w,t), the linear gyroki-
netlc equation is

However, this expression was only introduced as a math-
ematical convenience. As an important component of our
gyrokinetic theory, the pull-back transformation in the Max- df 1 of
well equations will enable us to recover many classical re-t 5t T(Ubtvy) - Vi— ﬁb'VHom
sults, such as the compressional Aliveave, from a purely

ineti it bri in kineti c 1 oH JF

gyrokinetic approach. Naturally, it brings in kinetic effects as = b-(VEoXVH;)— —b- VFO 1 _yH, 20 0
well. B m ou

(37)
IV. GYROKINETIC EQUATIONS AND GYROKINETIC Another set of gyrocenter coordinates, €, u, §,t) is of-
PERPENDICULAR DYNAMICS ten usede is the total energy in the unperturbed field, that is,

2

_ Now we are ready to obtain the linear gyrokineti_c equa-  _ Ho= mU + uBy (39)
tion. In the (extendeyl gyrocenter coordinates 2

(X,U,p,€,w,1), the distribution functiork satisfies the VIa- |, this set of gyrocenter coordinates, the linear gyrokinetic

sov equation: equation is:
B JF B JF . oF oF - oF _ of cb
{(FHel = H{FHp= e+ X o+ U— 0 — T(Ubtvy) - V=| X VFo |- VH,
(30)
The linear gyrokinetic equation in its geometric fofooor- + &_':(’(UbjLVd),VHl' (39)
dinate independent forntan be written as: de
{f He}+{Fo,Hg} =0, (31  Analternative form of this equation is written in terms of the
nonadiabatic part of,
or
dFo
of g=f-H;— Fyt (40)
- T Hot=—{Fo,Ha}, (32 €
h %9 (Ubtvy Vo=| 2 xvr, v P02, 41
wnere Tt ( Va)-Vg= B 0 9 ot (41)
F=Fo+f, The fact thatf contains no gyrophase dependent part in
muU? the gyrocenter coordinates does not imply thigtgyrophase
Ho= 2 +uB, (33 independent in the particle coordinates. The important infor-

mation about gyromotion is carried by the gauge functon

e whose governing equation 18:
Hi= e¢1(X+P0,t)_EV'Al(X+Po,t) : c?S 5 25
{SHeo}= Qa R'{XaHEo}er{U,HEo}

Letf=f+f andf_=<f). SinceX, U, ¢ and{Fq,H,} are 13

gyrophase independent, gyrophase averaging gives

~ e
af— T &f— =edi(X+po.t) — CVAL(X+po.t). (42)
XU —{Fo.H1}, (34
20 This equation plays the same role for perpendicular dynam-
and ics as the gyrokinetic equation does for the parallel dynam-
~ ~ ~ ~ ics. In this senseS, as a function of phase space and time,
‘9f X&_f ) ‘7_f y 5_f:o (35) can be viewed as a “distribution function,” even though its
X g dimension idenergy[time]. Contrary to the gyrophase inde-

endent functiorf, Sis gyrophase dependent, and it can be

The equation forf is homogeneous and does not depend Orpolved for in a formal form when

the perturbed field. For the initial value problefm,s purely

a residual of the gyrophase dependent part of the initial per- ()

turbation. The physics for linear eigenmode analysis requires 6‘":§<1'

T=0 when the linear drivingp=0 andA=0. Sincef does

not depend on the field perturbatldn=0 for any field per-

turbations. Therefore we conclude S=89+¢,8V+e2 8P+, (43)
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(7

FIG. 2. Compressional Alfwewave.

and

-1 ~
e( - EW) =ed(X+po,t)— ;’V\-K(Xwo,t)-

To O(€?),
9S® ~ 1
o€ =e(¢—§m),
(44)
e ~ 1
s<°>—5f (¢— E’V\A)dg
To O(el),
sV dso
9€ dt ’
(45)
e d
s<1>=—Q ﬁJJ(¢——V )dgdg
To O(é€2),
s dsfl
o dt ’
(46)

s<2>——e§izszf< ——"A)dgdgdg

Therefore, we have
e d" rn+1f~
n+1 dtnf

S= E (—e,)" ¢—%W}d§““,
(47)

where

d_c? X,H J U,H J 48
gi= a1 "X Heot- o +{U,Heol 5 (48
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Maxwell equations, although its effect in the perpendicular
Ampere’s law is most prominent and has not been realized
before. The perpendicular Ampere’'s law can formally be
written as:

(VXVXA), =2,

ef Vgd(X+ po—1)f(Z2)d®z
J

+; eJ V [8(X+po—T)

—8(X—n)1f(2)d°2+ 2, ef (V| +vg)
J
X 8(X+ po—r)LgFod®Z, (49

wherel g is given in Eq.(29), andS by Eq. (42).

Besides the compressional Alivewave, gyrokinetic
perpendicular Ohm’s Law and Bernstein wave discussed in
the next three sections, other applications of the gyrokinetic
perpendicular dynamics include the gyrokinetic MHD
theory, which will be reported in future publications.

V. COMPRESSIONAL ALFVE N WAVE

In this section, we use the simplest example of the com-
pressional Alfvé wave in a homogeneous magnetized
plasma to demonstrate the essence of gyrokinetic perpen-
dicular dynamicsB is in thee, direction. For simplicity, we
let k=kye,. The magnetohydrodynami®¢HD) results for
the compressional Alfwe wave indicate that the magnetic
perturbation is in the parallel direction, the electrical pertur-
bation and current perturbation are in tgedirection, and
the plasma displacement is in teg direction. From the ki-
netic point of view, we can choogeee Fig. 2

¢=0 andA=Ag,. (50

The gyrokinetic equation is:

of +Ub-Vf=0. 51
ry (53)
AssumingA,, focew =1t we havef=0.

Interesting physics is found in the gyrocenter pull-back

is the total gyrokinetic time derivative and is gyrophase in-transformation and the gyrokinetic Ampere’s law. In order to

dependent.

; ; 2
obtain the necessary pull-back transformatiorOige:)), we

As discussed before, the purpose of solving the gyrokineed to solve fowS/d¢ from Eq. (42). Note that{X,Hgg}
netic equation is to obtain the charge and current responses,Ub and{U,Hgy} =0 in a homogeneous equilibrium. Also,
in terms of the electromagnetic field, such that the Maxwell
equations are complete. We have seen that the distribution s

function f described by the usual gyrokinetic equation, Eq.

_X'{XvHEO}:O!

(37), cannot provide all the information about the plasma

responses. The pull-back transformation appearing in the g
rokinetic Maxwell equations requires the solution f8r
which is governed by Eq(42). The effects ofS i.e., the
gyrokinetic perpendicular dynamics, are present in all the

)(K/hen k=k, . Let

S=59+¢,SV+€2S?+0(€2). (52)
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As derived in Sec. IV,

0 aSO+sP+s?
Q—§~QT+O(%)
e d 1
=6l B V| | | gV
e & ~ 1 3
+WWJJ(¢—Ew)dgdg+0(ew)-

From the general form of the gyrocenter pull-back transfor-

mation

T F=F+LgF=F—

C e
A1+—VS)-VF+—b-(A1
e mcC

Qin et al.

current in the Maxwell equations in terms of the perturbed
fields. They can be derived from the general form of Eq.
(26).

—1 | [TE(Fo+ D 1(Z) (X +po— dez)
(53 Ny [j[ev( ot H)I(Z)8(X+py—r) 1

e JdFg
S(X+pg—rt)——

=f 5(X+p0—r)f(Z)dGZ+J — e

2
ev’y
X[—Q—ch‘ J

] (3=

Detailed calculation shows that the quasi-neutrality condition

e d
0% at

e %”V\-A()dg

e &

Qa 2 (59)

dé df} déz.

B 2 (eny);=
+VS A N T LU It gi information about the dispersi
&U me|c™ 2 T 32 |on Lséla;aigr?nerate. t gives no information about the dispersion
+0O(ep), (54) The perpendicular Ampere’s law is needed to complete
the equation system. For this purpose, it is necessary to ob-
tain the perturbed perpendicular flow:
we have:
) noVu=U VL[TEY(FoJrf)](Z)é(Xero—r)dGZ}
e JFg ev’ 1
[TGy Fo+f)]1—f+mc o | 0% (59
=JVlé(X+p0—r)f(Z)dGZ+JVL5(X+p0—r)
© 7 f b VK |d
i) | : oFo [ —ev? ] 1
e ol —€v, e ~
e & ~ 1 X&T[Q—zB——z—I(df—W)d&
-7 Ity s c Q° ot c
+oa | <¢ Cw)dgdg]. (55)
e o°

In the above derivation, we have used the following expres-

sions for the gyro-average:

H1=<e¢(X+po,t)— EV-A(X+po,t>>

—eJO(k ) H(X,t)— —UA|(X t)}
k v
+ek—J1( )b (VXA,)
1 2
~€ (X, 1) = CUAX, D+ -5 Bi(X, t)}
o _Vs
9E Q-

We need to express the perturbed density and the perturbed

f f b— %”\m)dgdg]dﬁz

Here we denote the macroscopic flow aywhich was used
differently in previous sections as the notation for the par-
ticle velocity in the particle coordinates. However, there is
no confusion because the meaningvas usually clear from
the context. We will ignore the FLR effects, and use the
expression for the particle perpendicular velocity

V,=-V,[sin(§)e+cog)e].

Finally, the perturbed perpendicular flow is

+__
Q3 at?

(60)

(56) e d

e JdFg
MoVi. = aZat

m_c&,u

1
f f Evi-Aidg dg]dﬁz

—iwnye’B w noe ’B
= Tm2c202 Axey+ 20203 Ay

JvLa(x—r) f 1VL ‘A, déE

e 42
Q3 at?

(57)

nomc? JE,
eB® gt -

NeC

Z?EXB-F

(61)
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It is obvious that theExB flow does not contribute to the the equation forS, Eq. (42), can be solved without the as-
perpendicular current. The perpendicular current is generatesimption thate ,<1. In the current case, E42) is simpli-

by the ion polarization drift, fied into:
. ngm;C
j=2 (engva)j~ —a7— A8 (62 S 9S_ VAL e
7 B Q PR e— CVL sin(§)A,. (68
The perpendicular Ampere’'s lawVXVXA), =4x/cj,
gives: This an ordinary differential equation f& the solution for
4 which is
NoMm;
kgAXZ T S “w?A,, or wzzksvi. (63 .
B ev, cog¢é)tiwsin(é) =
. : : : : S=lo A= +c.€'%, (69)
This is the compressional Alfvewave. The key point of this cQ) (0+1)(w—1)

gyrokinetic version of the compressional Alfvevave is the
perturbed perpendicular current. Ty ¢,), the perpendicu- wherew=w/{). As a choice of gauge; is set to zero. This
lar flow is theE X B flow, which gives no current. Therefore is also because;e'¢“ is independent of the linear drive, and
we have to go toO(efu). The current to this order is the it corresponds to the initial condition. Therefore, for linear
current generated by the polarization drift in the perturbeceigenmode analysis;; can be set to zero. Substituting the
electromagnetic field. We recall that the physical effect ofsolution for S into the pull-back transformation, we obtain
the gyrocenter pull-back transformation in the Poisson equahe perpendicular flow
tion is the polarization densityand in the parallel Ampere’s
law is the skin depth currefit.What we have found out here e oF,
is the physical effect of the gyrocenter pull-back transformaoVi. = f V. 8(X+po—1) g5 W(_VLAX)
tion in the perpendicular Ampere’s law—the polarization
current. Actually, the polarization density in the Poisson
equation is also an effect of the gyrokinetic perpendicular
dynamics. It is easy to verify that keeping the solutiorsod
orderO(ef)) in the pull-back term of the Poisson equation
gives the polarization density.

Heuristically speaking, to the leading order, the polariza-
tion drift is

—sin(é)+iwcog )

SN~ — = Do |92

X

%)

_ NoeA,
- & G D(o—1 Y

cm

(—52

—w?+1

} . (70

Obviously, the first term is the polarization flow; the second
v :m_Cz E 64) term is theExB flow. This result is valid for general fre-
P eB’ ot quency. Because of the termw?+1 in the denominator,
the ExB currents of ions and electrons do not cancel with
each other. It is easy to see that EG0) recovers the low
&requency result whem<1.

where higher order terms associated withV have been
neglected. For the electrostatic modes and the shear r\lfv

modes,
V__mc2 v, ¢ 69
P eB? gt VI. PERPENDICULAR OHM'S LAW

and it is important in the Poisson equation. For the compres- The gyrokinetic perpendicular Ohm’s law is seldom dis-
sional Alfven modes, the polarization drift is cussed. The lack of a perpendicular Ohm'’s law is fundamen-
) tally due to the lack of perpendicular dynamics in the previ-
__mc ﬂ (66 ous gyrokinetic theory. The basic analytic formalism of
P eB® gt*’ perpendicular dynamics introduced can be used to derive a
perpendicular Ohm’s law. The single most important step is
to obtain the perpendicular flow. In the normal procedure,
fRe perpendicular current needs to be related to the first per-
pendicular moment of the gyrokinetic equation foBut we
notice immediately that th¢ VV, d3v operation on the gyro-
kinetic equation provides us with no information at all, be-
47rngm;c? cause all the quantities appearing in the gyrokinetic equation
o=~ gz - (67) are gyrophase independent. The result of this operation is
0=0. Therefore, deriving the gyrokinetic Ohm’s law essen-
In the above derivation, we have assumed tkgt tially means obtaining an expression for the perpendicular
=/ <1 for the compressional Alfvewave to obtain the current from the gyrokinetic pull-back transformation. In this
solution for S Since w~kwa, when k, increases section, we consider the gyrokinetic perpendicular Ohm’s
sufficiently® w can become comparable €2 We note that law for the shear Alfva modes A, =0).

and it is important in the perpendicular Ampere’s law.

As usual, the linear current response can be expressed
terms of the plasma susceptibility (and equivalently the
dielectric tensok). From this point of view, Eq(62) can be
alternatively interpreted as

Downloaded 19 Jan 2001 to 198.35.7.82. Redistribution subject to AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html.



1584 Phys. Plasmas, Vol. 6, No. 5, May 1999

First for the equilibriun®’
ef (V| +Vq)Fo8(X+ po—r)d®z

jOng

%Z eJ' [V, Fopo: VS(X—r)+VgFed(X—r)]dZ
J

-sef |-

(VLHPOI)F0+Vd }d Vv

P\ b VB
—-VX bE +§X PLF_PHbXVb
b VB b, P
~c| 5 XVP, +| bX 7= Vx5 |P, + 2 Vxb
B B
Cc
— S [bXVP, +(P,~P,)Vxb] (71)

where we have kept only the leading order FLR effect and

vi
PLE; fTFodav,

(72)
Pi=> fU2F0d3V.
i
For the perturbed part,
novu=J (V| +Vg)f8(X+ py—r)d®z
+f V, 8(X+ pg—r)LgFod%Z, (73

where vy is neglected for theLgF, part of the pull-back
transformation. For the first term, we have

f (V| +vg)f8(X+po—r)d®Z

1 mevf
eB|?* 2

V2
+f m(Uz—%)deVbe .

f d3v

(74

Unlike the fluid approach, we do not introduce any closure
scheme to close the perpendicular and parallel energy mao-

ment. In kinetic theory, this term is simply determined by the
distribution function solved for from the gyrokinetic equa-
tion.

For the termf V, 8(X+ po—r)LgFod®Z, we have
aF e 4S aFO
au mc ag &,u

We will keep terms up t(D(ew) andO(pgk,) in 9S/d¢,

LGFO__AI\(X+P0 t) — (75

S e~ 1 e d ~ 1
Fﬁ(‘ﬁ‘zm“)‘maf ‘f"am")df

e 1

= Po”L Po(ex5|n§+eyCOS§) <¢—EUA>,

(76)
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where the curved geometry termdiidt is neglected,

_9. v~ a .
dtat Ve VT (77
Therefore toO(pgk, ),
fvlé(XwLpo—r)LGFodGZ
e Fo
= | =g Vil 8(X=1)po- VA + po- VS(X—1)A]
d6z efﬁ':(’v S(X piiry
Xd°Z+ 5 WL(_") o= UA
1d
thj(¢ ’m:)dg} 79
The first term is obviously zero.
fvlﬁ(Xero—r)LGFode’Z
e i )
:_?f FoV.|po+ ﬁpo(e&sm&reycosg)
-V p(X)d3V
- ° fF—mVi iw(s M’dv 79
=" am) Foor |7 g %o (79
noc JE,
= [V¢ b— Vq’)} BQ o
Finally, the perpendicular flow is
c mV?
(novh_)j: e_B bXVf 2 fd3V
V2
+f m Uz—%)fd*"Vbe
j
NojC noc\ JE;
+ B E, X +(BQ)J. s (80)

Clearly the second term in above equation is BB drift
term, and the last term is the polarization drift term. The
macroscopic flow of the plasma is that of the ions; to the
leading order it is

C
1L:_EL><b'

B (81)

This is the perpendicular component of the ideal MHD
Ohm’s law. One would argue that this equation can be writ-
ten down directly from thé& x B drift. However, we empha-
size that while this argument is physically correct, but the
result here is systematically derived from the gyrokinetic
theory. Our rigorous derivation confirms that, to the leading
order, theE x B drift is indeed the plasma flow. However, the
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ExB drift does not generate any current. The perpendicular v . v 6
current comes from the parallel and the perpendicular energy [€”"6(X—r)]Qd ZZJ S(X—r)e P r*Qd°Z, (90)
moment and the polarization drift.

) 5 and
. c mV; 3 ) Ve o
Jn—; [E bXVJ 5 fd V+f m(U - fo ei(m+n)§d§:5m,—n2ﬂ'v (91)
enygc\ JE
X f d®VV xb ] L3 (Se) B (82 We have
i BQ ]. at 2 B 2 9
™ Noed vituy
”1:(27T/m)3’2f T eXp(_ 2T/m
VIl. BERNSTEIN WAVE
is secti i i o« Nla(=ipk)l4(ipk)
In this section we recover the Bernstein wave and use it > v, do,do, . (92)
as a second example of how to apply the general theory n=—c (n—w)

developed here to related problems. o The following properties of the Bessel function are needed to
We consider an electrostatic wave propagating in a hofinish the integral:

mogeneous magnetized plasma with-Q). Let By=Bge,

andk=ke,. The solution for the linear gyrokinetic equation In(X)=1""Jx(ix),
is degenerate becaukg=0, I (0=(=1)"I(x)=In(—X), 93)
= Sp Y g (83) » 1 a’
=——Fo— =0. ~pt? 32 = —ea%p [
T "w—kU fo te” P J (at)dt 2pe I 20/

In this special casd, the gyrophase independent part of theC . he alaeb btai
distribution function, does not play any role, and we focus on arrying out the algebra, we obtain
the gyrophase dependent part which is described by the “dis- ed 2n2 K2T k2T
tribution function” S. The equation foS is N1=Nog- Z:l ( w)2 29XP( - sz)|n<92m>- (94
—| —n
Q

Finally, the Poisson equation V2¢=Ej4a-r(en1)j gives the

SHeol =0 o+ = e
{SHeo}= a_§+ﬁ—e¢( +po)

. po-V dispersion relation,
=g/ eroV—Jo| ——| | . (84) ) 2 2 2
! > 4nge D 2n kT | kT
That iS, - ] TkZ =4 (g)z_nzex QZm n sz .
iSsS _ e . Q
58 1wS= 5[e'ﬂk cosé— J,(pk) ] ¢, (85 (95
_ _ o This is the Bernstein wave. As we can Sehis derivation
wherew= w/{). Using the identity from gyrokinetic theory is quite different and more straight-
oc forward, compared with the conventional method—
ehcosi= D | (N)e¢, (86) integrating the Vlasov equation along the particle’s unper-
n==o turbed orbit in the particle coordinat®.
we solve forS
VIIl. CONCLUSIONS AND FUTURE WORK
S= L_JO¢+ A 2 _I”('pk) enégp. (87) In this paper, the theory for gyrokinetic perpendicular
Qiw Q0= i(n-w) dynamics is developed by introducing an extra “distribution

function” and a gyrokinetic equation for it. Using this
model, we have recovered the compressional Alfveave
S e Z o nl(ipk) ine from a gyrokinetic approach. From the viewpoin} of gyroki-
€ Q< We 2 (88) netic theory, the physics of the compressional Alfwgave
is the polarization current at ord€(e2). Therefore, in a
The density response comes only from the pull-back transpow frequency gyrokinetic system, the compressional Alfve
formation sincef =0. wave is naturally decoupled from the shear Atiwsave and
e dS oF, the drift wave. In the gyrocenter coordinates, the gyrophase
n1=f Jof d3v+f S(X+pg—r1) — — —d° dependent parts of the distribution functiSrand f are de-

We need onlyS/d¢ in the pull-back transformation,

me o¢ Ju (89) coupled from the gyrophase independent garfhe infor-
—e nl,(ipk) mation abousSis important, not only for waves at the cyclo-
= f [ero VS(X—1)] = Fo > mem‘fd’ d°z. tron frequency, but also for low frequency waves, such as the
e compressional Alfve wave.S and the corresponding gyro-
Using the facts that kinetic equation are responsible for the perpendicular dy-
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namics. They produce the polarization density in the gyroki-ACKNOWLEDGMENTS

netic Poisson equation and the polarization current in the

gyrokinetic perpendicular Ampere’s law. Introducing the gy-

rokinetic perpendicular dynamics also extends the gyrokiNO- DE-AC02-76-CHO-3073. We thank Professor L. Chen,
Dr. T. S. Hahm, Dr. Z. H. Lin, Dr A. J. Brizard, and Dr. G.

netic model to arbitrary frequency modes. As an exampleH ) )
the Bernstein wave is recovered from the gyrokinetic modelf@mmett for constructive comments and suggestions.

The gyrokinetic perpendicular dynamics uncovered here em-

phasizes that the spirit of gyrokinetic reduction is not aver-

aging out the gyromotion, but rather decoupling the gyromo-APPENDIX: PHASE SPACE LAGRANGIAN LIE
tion from the particle’s gyrocenter orbit motion. When PERTURBATION METHOD

necessary, the information abo8tcan always be obtained ) o .
easily. The study of dynamics from the Hamiltonian point of

Only linear theory is presented in this paper. CarryingVieW provides us with systematic methods to deal with com-
out the analysis to the second order will give the nonlineaPlicated dynamic structures, especially the perturbation
theory for small amplitude perturbatiofs™ Since the con- Methods which have great value in celestial mechanics and
struction of the gyrocenter coordinates depends on the pef? guiding center dynamics of charged particles in an elec-
turbed field, the gyrocenter coordinates have to be defined fomagnetic field. Hamiltonian dynamfts'® is given by a
the second order as well. As a result, the gyrokinetic equaSymPplectic structures and a Hamiltonian functiofd on an
tion for Swill become nonlinear. However, the basic features€ven dimensional man|f0|M2”_. .
of the linear gyrokinetic perpendicular dynamics are still By definition, the symplectic structure is a closed non-
valid for nonlinear theory. For example, the gyrophase dedegenerate differential two-form dvl "
pendent and gyrophase independent part§ afe still de- dw=0, and
coupled. The nonlinear gyrokinetic equation is (A1)

VéeT,M and &+0, InpeT,M such thatw(& 5) #0.

This work is supported by U.S. Department of Energy

{F.Hg}= oF +{F Hl= oF +X o+ +U P+ + gi =0. The symplectic structure as a special two-form establishes an
ot 29 isomorphism between the tangent spag® and the co-
(96) tangent spac@y M at anyx on M, that is, for any&eT,M,
— - — ) .o . we havew(-,&€ which is an element inTx M, and vice
LetF=F+F andF=(F). SinceX, U, and¢ are gyrophase yersa. Denoting the isomorphism fréfij M to T,M asl, we

independent, we have obtain a correspondence between functiondvband vector
_ _ _ _ fields onM?":
FHg= = imm=2 i x 0 g 9 X =1d
{F, E}_E"_{ ) }—E‘F R—'— 09 97 g=1dg, 2
an
Therefore, the symplectic structure generates an algebraic
~ ~ ~ ~ ~ structure for functions oM—the Poisson bracket,
= 4 _dF |~:H_aF )-(aF UaF -&F_O
{F.Het= - H{F Hj= —+ X o+ gu tege=0 {f,g}=w(Xg,Xs). (A3)

(98) It can be shown that the Poisson bracket is skew sym-

L ~ ) metrical and satisfies the Jacobi identitsom dw=0):
If e,=w/Q<1,itis easy to prove tha& =0 to any order in

€0 {f.g}=—{9.f},

On the other hand, the nonlinear gyrokinetic theory and _
the nonlinear gyrokinetic perpendicular dynamics can be de-  11f-@5:hH+{{h.f}.g}+1ig.h}, f}=0.
veloped, without the assumption of small perturbations, di-The set of functions oM with the Poisson bracket is thus a
rectly from the guiding center theory for the time-dependent_ie algebra.
electromagnetic field® The difference between the guiding Usually we want to solve for the Hamiltonian flow cor-
center coordinates and the gyrocenter coordinates is not negssponding to a Hamiltonian vector field,=1dH. The
essary for this approach, and the perturbations can be arbitamiltonian flow¢(t,x) is an one parameter group of trans-
trary as long as the guiding center coordinates exist. A sucformations onM?" satisfying
cessful theory for nonlinear gyrokinetic perpendicular

(A4)

dynamics is the key to nonlinear gyrokinetic MHD and a  ¢(0X)=X,

gyrokinetic model for nonlinear cyclotron waves. Recent de- B(S,B(1,X) = d(S+1,%), (A5)
velopment in perturbation methods for Hamiltonian dynam-

ics, such as the Berry—Hannay pH&s&®and the geometric d

perturbatiorf® may be helpful for the development of a non- dt (1, x)=Xy=(1dH)y.
linear gyrokinetic theory, especially for nonlinear gyroki- t=0
netic perpendicular dynamics. For such a flow we have
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d
| otx)= d(t—=s,¢(s,x)) 2n
dt t=s d(t—S) t—s=0 Coordinate R
System 1
=(1dH) 40,65, = (1 dH) g(sx) - (AB)
Now the dynamics of a functioR on M under the Hamil- T
tonian flow is simply given by the Poisson bracket betweer
F andH,
{F,H}=w?(1dH,I dF)=(1 dH)dF
Coordinate * X
d System 2
=g PUOVE=g F(@(tx). (A7)
t=0 t=0
Similarly, we have FIG. 3. Coordinate transformation as a magRff.

d
Flo(tx) =g F(o(t—s,¢(s,x)))

dt e
‘ (7e70 The coordinate transformation for the phase spgdc8
={F,H}(¢(s,X)). (A8)  can be represented by a map in & space(see Fig. 3,
In a given local coordinate system, T:X—X. (A13)
ﬁ’_:w_xj From the viewpoint of Lie perturbation methotfs’
ox' e such a map is generated by the flow due to a vector @eld
ig This flow can be formally written as
i —1\ij <
Xy=(0™H1=15, (A9 go(t,X) =€Cx, (A14)
i 199 g of The coordinate transformatioh is the flow mapping when
1,9 = 0 XgXi= wij(0” ) -7 (0 )! o t=1,
— G
=(0™) ax™ gxT Perturbation theory considers transformations which are near

For many physical problems, the symplectic Structureidentity. The vector field is small. Using the natural small

and the Hamiltonian function are given by the Poineare Parameter existing in the probler, we express the coordi-
Cartan form nate transformation as

~ — a€G
y=vy+Hdz (A10) T=e®. (A16)
which is a one-form on the spac®@", 7). H is the Hamil-  The push-forward and pull-back transformations are there-
tonian function. The symplectic structure M?" is obtained ~ fore
by the exterior derivative of the one-fori T.—e o
* )
w=dy. (A11) T* —gele, (A17)

For a charged particle moving in an electromagnetic ) ) o ] _
field, the phase space is the extended eight-dimension4fn€reLc is the Lie derivative. The vector fiel@ is chosen
space V¥,r,w,t). The PoincareCartan one-form(phase such that in the new coordmatg system, the d_yn_am|c struc-
space Lagrangiaris: ture has some desyed propeme_s. However_, it is generally
only possible to satisfy these desired propertie®(e). To
go to higher order, we can introduce a series of
transformations?
(A12) g
. . . T,=e€™n
It is easy to show that starting from this one-form, we can
recover the usual motion equation for a charged particle irG,, is chosen to give the desired propertiesxe"). There-
an electromagnetic field. fore the overall transformation is
One of the most useful features of the Hamiltonian for-
malism for dynamic systems is the systematic techniques T="-TsT,Ty. (A19)
available to deal with a perturbed system. When the systenis push-forward, pull-back, and their inverses are
is not far away from a preferred situation which could have,
for example, an exact solution or some symmetry properties, T, =:-Tg«TxT1x, T;1=T;*1T;*1T;*l--- ,
we can reconstruct coordinate system such that the good
properties of the unperturbed system can be utilized. *=TIT3Ts-o, T* = T3 MTEOMTOL

Ye=

e 1
EA(r,t)+mv -dr—w dt—[zmv2+e¢(r,t)—w dz

n=1,2;. (A18)

(A20)
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Whenx is transformed tox=Tx, the PoincareCartan
one-formy is transformed toy=T* ~1y+dS, whereSis an
arbitrary gauge function. AddingS to y does not change
the particle dynamics because the symplectic structudeyis
andd dS=0. The expression of in terms ofe can easily be
calculated®?

Yo=70+dS,
L1yo+dS;,

|—171+(%L§_

71 =1~
(A21)

V2= Y1 Lo)yo+dS,,

These equations are solved for the vector fi€ldand the

gauge functiorS, order by order when the desired require-
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