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Recent developments in gyrokinetic-magnetohydrodynamics~MHD! theory and in electromagnetic
gyrokinetic particle simulations raise the question of consistency between the gyrokinetic model and
the fluid model. Due to the special characteristics of the guiding center coordinates, it is a nontrivial
exercise to show this consistency. In this paper it is shown, in a very general setting, that the
gyrokinetic theory and the fluid equations do give an equivalent description of plasma equilibrium
(]/]t50). The fluid continuity equation and momentum equation for equilibrium plasmas are
recovered entirely from the gyrokinetic theory. However, it was Spitzer who first realized the
importance of consistency between guiding-center motion and fluid equations. In particular, he
studied the ‘‘apparent paradoxical result’’ regarding the difference between perpendicular particle
flow and guiding-center flow, which will be referred to as the Spitzer paradox in this paper. By
recovering the fluid equations from the gyrokinetic theory, we automatically resolve the Spitzer
paradox, whose essence is how the perpendicular current and flow are microscopically generated
from particles’ guiding-center motion. The mathematical construction in the gyrokinetic theory
which relates observable quantities in the laboratory frame to the distribution function in the
guiding-center coordinates is consistent with Spitzer’s original physical picture, while today’s
gyrokinetic-MHD theory covers a much wider range of problems in a much more general and
quantitative way. ©2000 American Institute of Physics.@S1070-664X~00!05202-2#
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I. INTRODUCTION

Since Littlejohn’s work on the non-canonical Ham
tonian structure for the guiding center motion,1–3 modern
gyrokinetic theory has gradually been established.4–14 Par-
ticle simulations based on gyrokinetic models have succ
fully been used to study electrostatic microturbulence a
transport in tokamak plasmas.15–21 Recently, gyrokinetic
theory has been developed to study fluid types of mode
general geometry. These modes, such as Toroidal Alf´n
Eigenmodes ~TAEs! and Compressional Alfve´n Waves
~CAWs! in tokamak geometry, were studied previously on
by fluid equations. The advance of gyrokinetic theory in t
direction blurs the conventional boundary between the gy
kinetic theory and the fluid models. The ideal behind t
so-called gyrokinetic-magnetohydrodynamic~MHD! theory
is to investigate all the macroscopic fluid phenomena enti
from the gyrokinetic side.11–14 ~In this paper, gyrokinetic-
MHD theory is defined to be the analysis of electromagne
fluid motions from the gyrokinetic point of view withou
utilizing the fluid equations. Here, MHD refers to plasm
fluid dynamics in general.! Obviously, there should be n
discrepancy between the gyrokinetic and the fluid picture
the gyrokinetic-MHD theory is meant to be correct in d
scribing the fluid motions. The importance of gyrokineti
MHD theory is manifested as modern fusion devices
proach ignition conditions, where significant numbers
energetic particles are generated by fusion reactions, and
restrictions of fluid models, including the lack of kinet
resonances and inaccuracy in parallel dynamics, bec
prominent. Fully kinetic models are needed. Gyrokinet
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MHD theory can provide a rigorous, self-consistent, a
nonperturbative formalism for those modes having b
strong kinetic and strong fluid characteristics, such as fi
bone modes and hot particle driven TAEs. For this purpo
it is crucial that gyrokinetic-MHD theory can recover~but is
not limited to! fluid models.

What gyrokinetic theory offers is a simplified version
the Vlasov–Maxwell system by utilizing the fact that,
strongly magnetized plasmas, the particle’s gyroradius
much smaller than the scale length of the magnetic fie
eB[ur/LBu!1, where LB[uB/¹Bu. More fundamentally,
gyrokinetic theory is about the construction of a gyrocen
coordinate system in which the particle’s gyromotion is d
coupled from the rest of the particle dynamics, and deriv
the Vlasov–Maxwell equation system in this special coor
nate system.~According to the convention in Refs. 9–14
guiding-center coordinates refer to this special coordinate
the magnetostatic case, while gyrocenter coordinates refe
their counterparts when there are electromagnetic pertu
tions in the system. In the static case, the gyrocenter coo
nate system is the guiding-center coordinate system. S
we only consider static cases in this paper, we will use th
two terms interchangeably.! Even though all coordinate sys
tems are geometrically equivalent, the algebra involved
different depending on the specific problems being stud
For applications in magnetized plasmas, the advantage o
gyrocenter coordinate system lies at the fact that, in this
ordinate system, the fast time scale gyromotion is decoup
from the particle’s gyrocenter orbit dynamics. For low fr
quency electrostatic modes and shear Alfve´n modes, the gy-
romotion is not important and is naturally decoupled fro
the system, as if it completely ‘‘averaged out.’’ The adva
tage of the gyrokinetic approach does not come withou
© 2000 American Institute of Physics
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price. Because of the special characteristics of the guid
center coordinates, it is a nontrivial exercise to show
consistency between the gyrokinetic system and the fl
equations. Here, the fluid equations mean the moment e
tions of the Vlasov equation in the particle coordinates. T
undertaking constitutes a major portion of the recent ana
cal work in the gyrokinetic area. Quite often, gyrokine
systems are only shown to be able to recover reduced
equations.

The purpose of the present analysis is to show, in a v
general setting, that gyrokinetic theory and the fluid eq
tions give an equivalent description of plasma equilibriu
(]/]t50). We will recover the fluid continuity equation an
the momentum equation~the zeroth and first moment equ
tions of the Vlasov equation in the particle coordinates! for
equilibrium plasmas from the gyrokinetic theory. The gyr
kinetic equilibrium is of fundamental importance for th
widely adopted perturbative gyrokinetic particle simulati
(d f method!,17–21 where the equilibrium distribution func
tion and the electromagnetic field are assumed to be kno
Gyrokinetic equilibria consistent with the well-studied flu
ones are obviously necessary for the perturbative gyrokin
particle simulations to be reliable. In particular, recent n
merical studies of equilibria with zonal flows21 raise again
the question of how to describe the equilibrium flow fro
the gyrokinetic point of view. In addition, kinetic-MHD
modes are normally driven by both energetic particles
equilibrium inhomogeneities. For example, to investigate
ternal kink modes by the gyrokinetic models, we have
give a correct equilibrium current distribution in the gyrok
netic equilibrium. A linear gyrokinetic theory for kineti
MHD eigenmodes can be found in Refs. 11–14. The rec
ery of the complete fluid equations with nonlinear dynam
from gyrokinetic theory will be reported in future publica
tions.

The essence of the problem studied here is how to re
the measurable quantities in the laboratory frame to the
formation in the guiding center coordinates . Given a dis
bution function F(X,Vi ,m) in the guiding-center coordi
natesZ5(X,Vi ,m,j), how do we calculate the fluid density
flow, and current? For example, if we want to know the flu
perpendicular current in a plasma without parallel flow a
electrical field, we may want to take the velocity moment
F(X,Vi ,m) to obtain the perpendicular current~see Sec. III
for details and more general cases!:

(
s

eE Ẋ'2pBi* /mF~Z!dVidm

5(
s

eE Vd2pBi* /mF~Z!dVidm

5
c

B
b3S p'

¹B

B
1pib•¹bD5 j b , ~1!

where(s is the summation over species. This is only part
the perpendicular current we have obtained from the Vla
equation in the particle coordinatesz5(x,v) by taking the
velocity moments,
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B
~pi2p'!~¹3b!. ~2!

By comparison, we find the missing term is

j M'52F¹3S cb
p'

B D G
'

. ~3!

One may want to try to recover this missing term by manip
lating the gyrokinetic equation, but it is not apparent at
how it can be found this way. Why is this term missing?

Obviously, the physics of the missing term is the perpe
dicular component of the well-known diamagnetic current
we imaginegyrating particles in strong magnetic field to a
like small magnets with magnetic momentm5mv'

2 /2B,
then j M5c¹3M with M52b(snms . We note that under-
standing this physical picture cannot be used to replac
rigorous derivation from first principles—the Vlasov
Maxwell system in either the particle coordinates or t
guiding center coordinates. If the gyrokinetic description
plasmas is self-consistent and complete, we should be ab
systematically recover this term, just as when we start fr
the Vlasov equation in the particle coordinates, we autom
cally recover this term.

Even though we pose this problem here using the l
guage of modern gyrokinetic theory, it is Spitzer who fir
realized this problem and its significance almost a half c
tury ago.22,23 Spitzer’s qualitative solution of this apparent
paradoxical result is fundamental and has been wid
adopted. At the center of Spitzer’s physical picture is t
idea that particle flow is different from the guiding-cent
flow. We will refer to this problem as the ‘‘Spitzer paradox
to reflect its interesting history. In Sec. II, we will discuss t
Spitzer paradox and how it is closely related to the mod
gyrokinetic-MHD theory. The importance of revisiting th
Spitzer paradox lies at the fact that the gyrokinetic approa
the description of plasmas based on gyrocenter motion,
been developed into a precise quantitative theory. A
‘‘seeming conflict’’ between the gyrokinetic theory and oth
well-established models should be resolved properly. Diff
ent theoretical models should predict the same results
experimental observables, such as the fluid density and
rent. In this sense, Spitzer’s solution to this problem is
first attempt at today’s gyrokinetic-MHD theory.

Of course, gyrokinetic-MHD theory has much more co
tent than just the perpendicular current. In Sec. III, we w
start from the basic gyrokinetic system and systematic
recover, for the static cases, the zeroth and first mom
equations of the Vlasov equation in the particle coordina
By quantitatively recovering the fluid equations from the g
rokinetic theory, we automatically resolve the Spitzer pa
dox, whose essence is how the perpendicular current
flow are microscopically generated from particles’ guidin
center motion. As Spitzer showed for the perpendicular flo
gyrokinetic theory indicates that all observables in the la
ratory frame~particle coordinates! are different from their
counterparts in the guiding center coordinates. Furtherm
IP copyright, see http://ojps.aip.org/pop/popcpyrts.html.
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gyrokinetic theory gives exact relations between observa
in the laboratory frame and quantities defined in the guid
center coordinates.

The mathematical construction, which relates the dis
bution function F(X,Vi ,m) in the guiding-center coordi
natesZ5(X,Vi ,m,j) to the observable fluid quantities i
the laboratory frame is the pull-back transformationG21* of
the inverse guiding-center transformationG21. We will
show that the physics encapsulated in the pull-back trans
mation is consistent with Spitzer’s physical picture on h
the diamagnetic current is generated by guiding-center
tion, even though the pull-back transformation is introduc
into the gyrokinetic system independently and naturally a
mathematical convenience.

The paper is organized as follows. In Sec. II, the Spit
paradox and its modern implication are discussed. In Sec
we start from the basic gyrokinetic theory, systematica
derive the equilibrium (]/]t50) fluid continuity equation
and momentum equation, and finish with a quantitat
analysis of the Spitzer paradox. In the last section, we s
marize and discuss future work.

II. THE SPITZER PARADOX AND ITS MODERN
IMPLICATIONS

Spitzer first noticed the obvious differences between
currents described by the fluid equations and the guid
center motion.22,23 There are two aspects of these obvio
differences in an equilibrium plasma without parallel flo
and electric field. First, the perpendicular current given
the fluid model is the diamagnetic currentcb3¹p/B, which
is not in the guiding-center drift motion.~It will be clear later
that cb3¹p/B is only part of the diamagnetic current.! On
the other hand, the curvature drift and the gradient drift
the guiding-center motion are not found in the fluid resu
This puzzle, first posed and discussed by Spitzer, is wha
call the Spitzer paradox. To resolve it, we must expla
qualitatively as well as quantitatively, how the diamagne
current is microscopically generated, and what happen
the macroscopic counterparts of the curvature drift and
gradient drift.

As to the first part of the puzzle—how the diamagne
current is generated microscopically, Spitzer gave the w
known physical picture, which is illustrated in Fig. 1. Th
basic setup is an equilibrium plasma with a constant m
netic field and a pressure~density! gradient in the perpen
dicular direction. From the fluid equationj3B/c5¹p, we
know that the perpendicular current iscb3¹p/B. However,
if we look at the microscopic picture, for each guiding ce
ter, the drift motion does not produce any current or flo
Spitzer pointed out that there are more particles on the
than on the right; thus macroscopically gyromotion genera
current and flow at each spatial location.

Widely adopted24–26 as it is, Spitzer’s picture has con
stantly been misunderstood. It is easy to observe that e
particle spends the same amount of time moving downw
on the right as it does moving upward on the left. The gu
ing centers for the particles do not move vertically. Based
this fact, Krall and Trivelpiece25 argued that ‘‘the existence
Downloaded 28 Aug 2000 to 198.35.7.70.Redistribution subject to A
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of a currentJ does not necessarily mean a transport of p
ticle across the magnetic field. Electric field and magne
gradients produce particle drifts, but a gradient in thepres-
sure does not.’’ This viewpoint is not accurate simply b
cause current is physically carried by particles. If there is
particle flow inside the plasma, there is no current. The pr
lem with Krall and Trivelpiece’s argument is the underlyin
assumption that if the guiding centers do not move vertica
then the macroscopic vertical velocity is zero.

Actually, even if the guiding centers do not move ver
cally, we can still observe vertical macroscopic flow. This
obvious from Fig. 2. Suppose that there are 3, 2, and 1 i
on the gyro-orbits centered atO3, O2, andO1, respectively.
We observe gyrophase-averaged downward flows at po
B, C, andD with current intensity 1, and an upward flow a
point A with current intensity 3. It is clear now that zer
guiding center velocity does not imply zerolocal macro-
scopic current or flow, because it only implies zeroaveraged
macroscopic current or flow. More importantly, this avera
is the average over gyrophase and over different spatia
cations. Macroscopic and microscopic pictures are consis
if the averaged current or flow over gyrophase and over
configuration space are the same, which is the case for Fi

The average over the configuration space inevitably
volves the boundary conditions, which was realized
Spitzer to be necessary to reconcile the macroscopic and
microscopic picture. The boundary conditions can be qu
subtle. Let’s consider the setup in Fig. 1. Whether the lig
will be on depends on the boundary conditions. If the l
and right boundaries are perfect reflecting walls@see Fig.
3~a!#, which is case considered by Van Leevwen, Bohr, a

FIG. 1. Spitzer paradox.

FIG. 2. Guiding-center motion and diamagnetic current and flow.
IP copyright, see http://ojps.aip.org/pop/popcpyrts.html.
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FIG. 3. Boundary conditions.
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Spitzer,23 the light is on, because there is a net current a
flow downward. Microscopically, gyromotions are not com
pleted on the boundary, therefore, the spatially avera
guiding center flow is downward. If the boundaries are sh
boundaries between vacuum and the plasma@see Fig. 3~b!#,
the light is off, because there is no net current. Macrosco
cally, the density gradient on the left plasma-vacuum bou
ary is reversed and approaches infinity. There is a sur
flow upward on the boundary, such that the spatially av
aged macroscopic flow is zero. In both situations, the mic
scopic and macroscopic pictures agree, because the spa
averaged current and flow are the same. We do not dis
how these boundary conditions can be achieved, but ass
theoretically that they can be achieved. The discussion
boundary conditions in the gyrokinetic formalism is actua
of practical interests. In the process of developing the gy
kinetic particle simulation methods, boundary conditio
were identified as important issues at the very beginn
When studying the drift waves using the gyrokinetic parti
simulation method, Lee and Okuda27 adopted a boundary
condition which is equivalent to the scenario illustrated
Fig. 3~b!.

For the second part of the puzzle—what is the mac
scopic counterpart of the magnetic drifts, Spitzer23 argued
that ‘‘in a region where the density and pressure are unifo
no macroscopic velocities or currents can appear, regard
of what magnetic field,B, may be present, provided tha
]B/]t vanishes.’’ Chen26 concluded that ‘‘the curvature drif
exists in the fluid picture,. . . . The gradient-B drift, how-
ever, does not exist for fluids.’’ Krall and Trivelpiece
conclusion25 argued that ‘‘Electric field and magnetic grad
ents produce particle drifts, but a gradient in thepressure
does not.’’

Even though the basic idea that the guiding center fl
is different from the particle flow is fundamental, the qua
titative microscopic picture for the diamagnetic current giv
by Spitzer22 was complicated and difficult to apply to gener
geometries. Chen26 concluded that ‘‘it can be quite tricky to
Downloaded 28 Aug 2000 to 198.35.7.70.Redistribution subject to A
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work with the single-particle picture. The fluid theory us
ally gives the right results when applied straightforward
even though it contains ‘‘fictitious’’ drifts like the diamag
netic drift.’’

The Spitzer paradox is important, because it highlig
the seeming conflict between the theory of gyromotion a
the fluid equations, two most fundamental concepts
plasma physics. After Spitzer posed this paradox, gyrokin
theory, the theory of gyromotion, has been developed int
powerful tool for the study of plasma physics. Recent dev
opment in gyrokinetic-MHD theory and gyrokinetic partic
simulation raises again the necessity to show the consiste
between the gyrokinetic model and the fluid model, but in
wider range and in a more general geometry. These are
modern implications of the Spitzer paradox. Therefo
Spitzer’s effort in this area should be regarded as the be
ning of today’s gyrokinetic-MHD theory. In the next sectio
we will recover the fluid continuity equation and the mome
tum equation from the gyrokinetic system. Part of the ana
sis is to derive the perpendicular flow~current! from the
gyrokinetic theory, which is exactly the essence of t
Spitzer paradox. In another words, the analysis prese
here includes a quantitative solution to the Spitzer parado
a very general setting.

III. GYROKINETIC EQUILIBRIUM

A. Posing the problem

Gyrokinetic theory assumes and takes advantage of
fact that the plasma is strongly magnetized, that is, the p
ticles’ gyro-radii are much smaller than the scale-length
the magnetic field

e[Ur¹B

B U!1. ~4!

The gyrokinetic theory for equilibrium plasmas is given b
phase space Poisson bracket
IP copyright, see http://ojps.aip.org/pop/popcpyrts.html.
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$•,•%: F~Z!3F~Z!→F~Z!, ~5!

Hamiltonian H(Z)PF(Z), and phase space distributio
function F(Z)PF(Z), whereZ5(X,Vi ,m,j) is the phase
space coordinates which are normally referred to as
guiding-center coordinates andF(Z) is the set of all smooth
phase space functions.

The Hamiltonian H(Z) and the Poisson bracke
$•,•%1–3,9,10 determine the particle dynamics inZ, and are
given by

H5
mVi

2

2
1mB1ef, ~6!

and

$F,G%5
e

mcS ]F

]j

]G

]m
2

]F

]m

]G

]j D2
cb

eBi*

•F S ]

]X
F1W

]F

]j D3S ]

]X
G1W

]G

]j D G1
B*

mBi*

•F S ]

]X
F1W

]F

]j D ]G

]Vi
2S ]

]X
G1W

]G

]j D ]F

]Vi
G ,
~7!

where

B* 5B1
cmVi

e
¹3b, Bi* 5b•B* . ~8!

The guiding-center velocity is then given by

Ẋ5$X,H%5
1

m

B*

Bi*

]H

]Vi
1

c

e

b

Bi*
3

]H

]X

5Vib1VE3B1Vd1O~e2!,

VE3B5
cb

B
3¹f, ~9!

Vd5
c

eB
b3~m¹B1mVi

2b•¹b!.

In this paper, we use the gyroradiusr0 and the thermal
velocity v th as the basic scale parameters for length and

FIG. 4. Guiding-center coordinate system.
Downloaded 28 Aug 2000 to 198.35.7.70.Redistribution subject to A
e

e-

locity. E52¹f is thus treated asO(e) for simplicity. The
case in whichE is O(e0) will be considered elsewhere. Th
basic ordering can be summarized as

ui;v th;O~e0!@u';
c¹p3b

enB
;

cE3B

B2
;O~e!. ~10!

For the current purpose, we only need to know the lead
order expression for the guiding-center transformat
G:z°Z, which transforms the particle coordinatesz
5(x,v) into the guiding-center coordinatesZ5(X,Vi ,m,j)

X5x2r01O~e!, Vi5v i1O~e!,
~11!

m5m01O~e!, j5u1O~e!,

wherem05mv'
2 /2B and (x,v i ,v' ,u) is the usual local par-

ticle coordinates.r0, defined in particle coordinates, is th
usual gyroradius. u is chosen such that v̂'5
2e/ueu(ex sinu1ey cosu). ex and ey are two perpendicular
directions in the configuration space, and (ex ,ey ,b) is a
right-handed orthogonal frame. The guiding center coor
nate system in a static magnetic field is illustrated in Fig.

The gyrokinetic equation forF(Z) is

$F,H%5Ẋ•

]F

]X
1V̇i

]F

]Vi
50, ~12!

where we have made use of the fact that for low freque
phenomena,F(Z) is gyrophase independent.11–14 It is easy
to verify that phase space volume is conserved by the P
son bracket~Liouville theorem!

]

]X
•~Bi* Ẋ!1

]

]Vi
~Bi* V̇i!50. ~13!

Therefore, the gyrokinetic equation can also be expresse

]

]X
•~Bi* ẊF !1

]

]Vi
~Bi* V̇iF !50. ~14!

Our goal here is to recover from the gyrokinetic theo
summarized above the fluid continuity equation and mot
equation derived directly from the Vlasov equation for ea
species

¹•nu50 ~15!

mnu•¹u1¹•p2
1

c
enu3B2enE50, ~16!

where

n[E f ~x,v! d3v, ~17!

u[
1

nE vf ~x,v!d3v, ~18!

p[E m~v2u!~v2u! f ~x,v!d3v5p'I1~pi2p'!bb,

~19!

p'5E 1

2
m~v'2u'!•~v'2u'! f ~x,v!d3v, ~20!
IP copyright, see http://ojps.aip.org/pop/popcpyrts.html.



nd

a
o

-
is

r

u

la

o

t
te

on
n

ck

ma-

il-

o-
rdi-

are
ith
tic

tive

se

996 Phys. Plasmas, Vol. 7, No. 3, March 2000 Qin et al.
pi5E m~vi2ui!•~vi2ui! f ~x,v!d3v. ~21!

f (x,v) is the distribution function in particle coordinates, a
I is the unit tensor.

As pointed out before, gyrokinetic theory assumes p
ticles’ gyro-radii are much smaller than the scale length
the magnetic field (e!1). We do not expect gyrokinetic
theory to be valid whene is not small. As a result, the re
covery of the fluid equations from the gyrokinetic model
for strongly magnetized plasmas only. Under this assum
tion, we have taken the fluid pressure tensorp to be isotropic
in the perpendicular direction. Since the gyrokinetic theo
adopted in this paper is correct to orderO(e), our recovery
of the fluid equations from the gyrokinetic side is carried o
to orderO(e) as well.

The fluid momentum equation@Eq. ~16!# is a vector
equation. We will recover the parallel and perpendicu
components of it separately. Making use of the identity

¹•~bb!5~¹•b!b1~b•¹!b

5~¹'2¹ i!ln B2
1

B
b3~¹3B!, ~22!

we have

¹•p5¹'p'1¹ ipi

1~pi2p'!F ~¹'2¹ i!ln B2
1

B
b3~¹3B!G . ~23!

The parallel and perpendicular components of the fluid m
mentum equation@Eq. ~16!# are

mn~u•¹u! i1¹ ipi2~pi2p'!¹ i ln B2enEi50 ~24!

and

nu'52
c

eB
@mn~u•¹u!3b1¹'p'3b

2~pi2p'!~¹3b!'2enE3b#, ~25!

where we have utilized the following identity:

~¹3b!'5
1

B
~¹3B!'2¹' ln B3b. ~26!

B. Pull-back formula for fluid density and velocity in
particle coordinates

As Spitzer first noticed, the fluid velocity is differen
from the averaged drift velocity. But how can we rela
quantitatively the fluid velocityu(r ) in the particle coordi-
nates to the information about the gyrokinetic distributi
function F(Z) in the guiding-center coordinates? The ge
eral formula for this purpose is the so-called ‘‘pull-ba
transformation.’’ Generally, for a macroscopic quantityq(r )
in the particle coordinates, we have
Downloaded 28 Aug 2000 to 198.35.7.70.Redistribution subject to A
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q~r !5E q~r ,v! f ~r ,v!d3v

5E q~z! f ~z!d~x2r !d6z

5E G21* @q~z!d~x2r !#F~Z!d6Z

5E Q~Z!d@X~Z!1r2r #F~Z!d6Z, ~27!

where we have assumed that the guiding-center transfor
tion G is a diffeomorphism~one-one onto and smooth!, and

d6Z[Bi* /md3XdVidmdj, ~28!

Q~Z!5G21* q~z!, ~29!

r5G21* r0 . ~30!

HereG21* is the pull-back ofG21, which maps any func-
tion on z5(x,v) into a function onZ5(X,Vi ,m,j)

G21* : f ~z!°F~Z![ f ~x~Z!!. ~31!

The physics encapsulated in the pull-back formula is
lustratively shown in Fig. 5. An observableq(r ) at certain
locationr in the laboratory frame is the average of its micr
scopic counterpart expressed in the guiding center coo
natesQ(Z) over nearby guiding centers withX(Z)1r(Z)
5r . In Fig. 5, three examples of such guiding centers
shown. Obviously, this mechanism is consistent w
Spitzer’s original qualitative picture of how the diamagne
current is generated by the gyromotion~see Sec. II!, but ex-
pressed using the gyrokinetic language, and in a quantita
way.

For the number density in particle coordinates, we u
q(z)51 andG21* 151.

n~r !5E d~X1r2r !F~Z! d6Z

5E d~X2r !F~Z! d6Z1O~e2!

52pE F~Z!Bi* /mdVidmU
X°r

1O~e2!, ~32!

where ‘‘uX°r ’’ means replacingX by r .
For the fluid velocity in particle coordinatesu(r ), we

haveq(z)5v5 ẋ, G21* v5Ẋ1ṙ(X)1O(e2), and

FIG. 5. The physics of the pull-back formula.
IP copyright, see http://ojps.aip.org/pop/popcpyrts.html.
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n~r !u~r !5E ~Ẋ1ṙ!d~X1r2r !F~Z!d6Z1O~e2!

5E @Vib1VE3B1Vd#d~X2r !F~Z!d6Z

1E ṙd~X1r2r !F~Z!d6Z1O~e2!. ~33!

We now look at the expression forn(r ) term by term. The
first term is part of the parallel flow.

E Vibd~X2r !F~Z!d6Z5nUibU
X°r

1O~e2!, ~34!

U i[
2p

n E ViBi* /mF~Z!dVidm. ~35!

For theE3B term, we have

E VE3Bd~X2r !F~Z!d6Z5
c

B
nE3bU

X°r

. ~36!

The magnetic drift term is

E Vdd~X2r !F~Z!d6Z

5
c

eB
b3S W'

¹B

B
1Wib•¹bD U

X°r

, ~37!

where

W'[2pE BmF~Z!Bi* /mdVidm, ~38!

Wi[2pE mVi
2F~Z!Bi* /mdVidm. ~39!

The last term is the diamagnetic flow, which can be simp
fied in terms ofW' ,

E ṙd~X1r2r !F~Z!d6Z

5E ṙr•¹d~X2r !F~Z!d6Z1O~e2!

52E ¹•@rṙBi* /mF~Z!#d~X2r !dVidmdj1O~e2!

52
c

e
¹3S b

W'

B D U
X°r

1O~e2!. ~40!

In deriving above equation, the following equations are us

ṙ5$r,H%5A2mB

m
ej1O~e!, ~41!

S E ṙrdj D
i j

5
2pmc

e
e i j b1O~e!. ~42!

Here,e i j b is the Kronecker symbol, and the subscriptb rep-
resents the dimension parallel toB.

It is important to observe that this diamagnetic flow a
pears naturally in our gyrokinetic system. Understanding d
Downloaded 28 Aug 2000 to 198.35.7.70.Redistribution subject to A
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magnetic flow from the gyrokinetic point of view is the ke
issue of the Spitzer paradox. We will come back to this iss
later on in Sec. III D.

Overall, the fluid density and flow in the particle coo
dinates can be expressed in terms of the gyrokinetic dis
bution function F(Z) in the guiding-center coordinatesZ
5(X,Vi ,m,j) as

n~r !52pE F~Z!Bi* /mdVidmU
X°r

1O~e2!, ~43!

n~r !u~r !5FnUib1
cb

eB
3S W'

¹B

B
1Wib•¹bD

1
cn

B
E3b2

c

e
¹3S W'

B
bD GU

X°r

1O~e2!. ~44!

The replacement ofX by r after the velocity space integral i
the above equations brings quantities from the guiding-ce
coordinateZ5(X,Vi ,m,j) back into the particle coordinate
z5(x,v), as if we are working in the ‘‘mixed coordinates
(r ,Vi ,m,j).

C. Recovery of fluid equations

We now recover the fluid continuity equation@Eq. ~15!#
from the gyrokinetic model. From our result forn(r )u(r ),

¹•~n~r !u~r !!5F¹•2pE ẊF~Z!Bi* /mdVidm

2
c

e
¹•¹3S W'b

B D GU
X°r

1O~e3!

5F¹•2pE ẊF~Z!Bi* /mdVidm GU
X°r

1O~e3!. ~45!

Applying *dVidmdj to the gyrokinetic equation@Eq. ~14!#
gives

¹•E 2pẊF~Z!Bi* dVidm50. ~46!

Therefore,

¹•~n~r !u~r !!5O~e3!. ~47!

To recover the fluid momentum equation@Eq. ~16!#, we
first invoke the basic ordering

ui;v th;O~e0!@u';
c¹p3b

enB
;

cE3B

B2
;O~e!. ~48!

It is then clear that

u•¹u5uib•¹uib1O~e2!

52ui
2~b3¹3b!1uibb•¹ui1O~e2!, ~49!
IP copyright, see http://ojps.aip.org/pop/popcpyrts.html.
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05¹•~nu!5¹•~nbui!1O~e2!

5nb•¹ui1ui¹•~nb!1O~e2!

5nb•¹ui1uiB•¹
n

B
1O~e2!. ~50!

We also can verify that

W'~r !52pE BmF~Z!Bi* /m dVidmU
X°r

5E 1

2
mv'

2 f d3v1O~e!5p'~r !1O~e!, ~51!

Wi~r !52pE mVi
2F~Z!Bi* /mdVidmU

X°r

5FmnUi
212pE m~Vi2U i!

2

3F~Z!Bi* /mdVidm GU
X°r

5mnui
2~r !1pi~r !1O~e!. ~52!

To derive the parallel component of the fluid momentu
equation@Eq. ~24!#, we apply 2p*ViBi* /m dVidm to the
gyrokinetic equation

Vib•
]F

]X
2~mb•¹B2eEi!

]F

]Vi
5O~e2!, ~53!

and get

Bi* b•
]

]X

Wi

Bi*
1

W'

B
b•¹B2eEin5O~e2!. ~54!

ReplacingX by r and using Eqs.~51! and ~52!, we have

B•¹
mnui

2

B
1B•¹

pi

B
1

p'

B
b•¹B2enEin5O~e2!. ~55!

The first term of this equation can be simplified by Eqs.~49!
and ~50!.

B•¹
mnui

2

B
52uimnb•¹ui1mui

2B•¹
n

B

5mnuib•¹ui

5mn~uib•¹uib! i

5mn~u•¹u! i1O~e2!. ~56!

In addition

B•¹
pi

B
5¹ ipi2pi¹ i ln B. ~57!

We therefore obtain from the gyrokinetic theory

mn~u•¹u! i1¹ ipi2~pi2p'!¹ i ln B2enEi5O~e2!,
~58!

which is the parallel component of the fluid momentu
equation@Eq. ~24!#, correct to orderO(e2).
Downloaded 28 Aug 2000 to 198.35.7.70.Redistribution subject to A
For the perpendicular component of the fluid equatio
we have, from Eq.~44!,

nu'5H cb

eB
3S W'

B
¹B1Wib•¹bD1

cn

B
E3b

2
c

e F¹3S W'

B
bD G

'
J U

X°r

1O~e2!

5
c

e H 2
¹p'3b

B
1p'Fb3¹B

B2
2S ¹3

b

BD
'

G
1pi

~¹3b!'
B

1mnui
2 ~¹3b!'

B J 1n
E3b

B
c1O~e2!.

~59!

Using

~u•¹u!3b52ui
2~¹3b!'1O~e2!, ~60!

b3¹B

B2
2S ¹3

b

BD
'

52
~¹3b!'

B
, ~61!

we finally have

nu'52
c

eB
@mnu•¹u3b1¹'p'3b

2~pi2p'!~¹3b!'2enE3b#1O~e2!, ~62!

which is the perpendicular fluid momentum equation@Eq.
~25!#, correct to orderO(e2).

The above equations are derived for a single spec
from which one-fluid equations can be derived trivially b
the usual procedure. Since fluid equations for a single s
cies have been recovered from the gyrokinetic side, so h
the one-fluid equations.

D. Quantitative analysis of the Spitzer paradox

By quantitatively recovering the fluid equations from th
gyrokinetic theory, we automatically resolve the Spitz
paradox, whose essence is how the perpendicular curren
flow are microscopically generated from particles’ guidin
center motion. For the discussion in this section, we assu
there is no macroscopic parallel flow. Using the results
previous sections, we can express the perpendicular cu
from the gyrokinetic viewpoint as

j'5(
s

neu'

5(
s

F E e~Ẋ1ṙ!d~X1r2r !F~Z!d6ZG
'

5(
s

j M'1 jd

5
c

B Fb3¹(
s

p'1S (
s

pi2(
s

p'D ~¹3b!'G , ~63!
IP copyright, see http://ojps.aip.org/pop/popcpyrts.html.
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where(s is the summation over species. As we have poin
out before, the physics of this equation is consistent w
Spitzer’s original picture, but is expressed from the mod
viewpoint of gyrokinetic theory, and in a quantitative wa
The macroscopic flow at some spatial location in the part
coordinates,u(r ), is the averaged instantaneous particle
locity of the guiding centers nearby, 1/n*(Ẋ1ṙ)d(X1r
2r )F(Z)d6Z. The mathematics here is simple and accura
Physically, the perpendicular current consists of two pa
the perpendicular component of the diamagnetic current
the drift current. TheE3B currents due to different specie
cancel out in neutral plasmas.

In the above derivation from the gyrokinetic theory,j M

and jd are naturally separated. They have different phys
meaning as they first appear in the equation. However, if
derive j' from the velocity moment of the Vlasov equatio
in the particle coordinates, we can only directly obtain

j'5
c

B
¹'(

s
p'3b2

c

B S (
s

pi 2(
s

p'D ~¹3b!.

~64!

Then, if we definej M and jd as they are, we find algebra
ically j'5 j M'1 jd . In this approach,j M and jd are merely
definitions. The theory itself does not indicate such a sp
As a matter of fact, we believe this split was first discover
when the problem was studied from the gyrokinetic side.

For each species, we have derived the diamagnetic
rent as

j M~r !5eE ṙd~X1r2r !F~Z!d6Z

52¹3S cb
p'

B D1O~e2!

52
c¹p'3b

B
2cp'¹3

b

B
1O~e2!. ~65!

Diamagnetic current in an electromagnetic medium of
form c¹3M is well-known.M is the magnetic moment o
the medium. If we define the plasma magnetic moment to
2bW' /B, thenc¹3(2bp' /B) is the diamagnetic curren
of the plasma. However, as first realized by Northrop,28 this
physical picture should quantitatively be proved from fi
principles—gyrokinetic theory. In other words, the fact th
in plasmas there is a current of the formc¹3(2bp' /B)
should not be taken granted, but as a result of correct mi
scopic theories. Northrop proved this fact from the viewpo
of guiding-center motion. But his method is quite comp
cated and is only outlined in Ref. 28. Obviously, our deriv
tion here is simpler and valid for general 3D~three-
dimensional! geometry. We note that the diamagnetic curre
is not cb3¹p' /B, but ratherc¹3(2p'b/B). In other
words, thecb3¹p' /B term in the fluid model is only par
of the diamagnetic current. To get the whole story, we n
to consider the second half of the Spitzer paradox, whic
about the macroscopic counterparts of the curvature drift
the gradient drift.

From gyrokinetic theory, the current due to the magne
drift for each species is
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d

c

jd~r !5
cb

B
3Fp'

¹B

B
2pib3¹3bG1O~e2!. ~66!

Therefore, contrary to those viewpoints cited in Sec. II, o
conclusion is that both the curvature drift and the gradi
drift have their macroscopic counterparts.

Putting togetherj M and jd calculated from the gyroki-
netic theory, we have

j'5(
s

j M'1 jd

5
c

B Fb3¹(
s

p'1S (
s

pi2(
s

p'D ~¹3b!'G , ~67!

where part of the diamagnetic currentc(sp'¹3(b/B) can-
cels part of the current due to the gradient drift. As discus
before, this result agrees with the fluid equations, correc
orderO(e2). When the distribution functionF0 is isotropic,
(spi5(sp'5(sp, we recover the familiar fluid resultj'
5c/Bb3¹(sp.

To summarize, using the gyrokinetic theory, we fou
that Spitzer’s original picture as to how the diamagnetic c
rent is generated is correct. However, accurate anal
shows that the fluid perpendicular current in isotropic pl
mas,cb3¹(sp' /B, contains both the diamagnetic curre
and part of the current caused by the gradient drift. The ot
part of the current caused by the gradient drift cancels
current generated by the curvature drift for isotropic dis
bution functions. This explains why it seems that, for isot
pic plasmas, there are no counterparts in the fluid model
the curvature drift and the gradient drift, ifcb3¹(sp' /B is
mistakenly believed to be exactly the diamagnetic drift.

IV. SUMMARY AND FUTURE WORK

The physical picture of guiding-center motion and
modern quantitative formulation, gyrokinetic theory, is
effective description of magnetized plasmas. On the ot
hand, fluid equations can be derived exactly as the mom
equations of the Vlasov equation without referring to t
notion of guiding-center motion. These fluid equations a
well-known and valid for both magnetized plasmas and n
magnetized plasmas. It is interesting to compare the gyr
netic description with the fluid description in magnetiz
plasmas where both descriptions are correct. The Spi
paradox, a seeming conflict between the macroscopic fl
picture and the microscopic guiding-center picture regard
the perpendicular current, was noticed almost a half cen
ago. In general, it is necessary to show the consistency
tween the gyrokinetic model and the fluid model in all a
pects. We have demonstrated this consistency, for the ca
equilibrium plasmas (]/]t50), by systematically deriving
the basic fluid equations from the basic gyrokinetic theo
Besides its theoretical importance, recovering fluid equati
from the gyrokinetic side has its practical value as we
Gyrokinetic-MHD theory will provide a rigorous theoretica
IP copyright, see http://ojps.aip.org/pop/popcpyrts.html.
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formalism for studying the gyrokinetic-MHD phenomena
ignited tokamaks by both particle simulations and numer
solutions.

Only nonlinear equilibrium is considered in this pape
Recent advances in linear gyrokinetic theory are reporte
Refs. 11–14. It is shown there that linear gyrokinetic the
can successfully recover shear Alfve´n types of modes in gen
eral geometry. In tokamak plasmas, internal kink modes
TAEs, conventionally only studied by fluid models, ha
been recovered from the gyrokinetic models. The newly
veloped gyrokinetic perpendicular dynamics enables us
include the compressional Alfve´n wave in the gyrokinetic
theory. The recovery of general nonlinear fluid dynam
equations from the gyrokinetic theory will be presented
future publications.
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