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Gyrocenter-gauge kinetic theory is developed as an extension of the existing gyrokinetic theories. In
essence, the formalism introduced here is a kinetic description of magnetized plasmas in the
gyrocenter coordinates which is fully equivalent to the Vlasov—Maxwell system in the particle
coordinates. In particular, provided the gyroradius is smaller than the scale-length of the magnetic
field, it can treat high-frequency range as well as the usual low-frequency range normally associated
with gyrokinetic approaches. A significant advantage of this formalism is that it enables the direct
particle-in-cell simulations of compressional Alfvevaves for magnetohydrodynami{®/HD)
applications and of rfradio frequencywaves relevant to plasma heating in space and laboratory
plasmas. The gyrocenter-gauge kinetic susceptibility for arbitrary wavelength and arbitrary
frequency electromagnetic perturbations in a homogeneous magnetized plasma is shown to recover
exactly the classical result obtained by integrating the Vlasov—Maxwell system in the particle
coordinates. This demonstrates that all the waves supported by the Vlasov—Maxwell system can be
studied using the gyrocenter-gauge kinetic model in the gyrocenter coordinates. This theoretical
approach is so named to distinguish it from the existing gyrokinetic theory, which has been
successfully developed and applied to many important low-frequency and long parallel wavelength
problems, where the conventional meaning of “gyrokinetic” has been standardized. Besides the
usual gyrokinetic distribution function, the gyrocenter-gauge kinetic theory emphasizes as well the
gyrocenter-gauge distribution function, which sometimes contains all the physics of the problems
being studied, and whose importance has not been realized previously. The gyrocenter-gauge
distribution function enters Maxwell's equations through the pull-back transformation of the
gyrocenter transformation, which depends on the perturbed fields. The efficacy of the
gyrocenter-gauge kinetic approach is largely due to the fact that it directly decouples particle’s
gyromotion from its gyrocenter motion in the gyrocenter coordinates. As in the case of kinetic
theories using guiding center coordinates, obtaining solutions for this kinetic system involves only
following particles along their gyrocenter orbits. However, an added advantage here is that unlike
the guiding center formalism, the gyrocenter coordinates used in this theory involves both the
equilibrium and the perturbed components of the electromagnetic field. In terms of solving the
kinetic system using particle simulation methods, the gyrocenter-gauge kinetic approach enables the
reduction of computational complexity without the loss of important physical content20@D
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I. INTRODUCTION coordinates. The gyrokinetic perpendicular dynamics, which

. ) ) has not been systematically considered in the conventional
Most of the interesting plasmas in the laboratory a”dgyrokinetic theoried; >8~12enables us to elegantly recover

space are magnetized plasmas. Particle’s motion in magnge compressional Alfiewave, which is missing in the pre-
tized equilibrium plasmas consists of the fast gyromotion ;s gyrokinetic description for waves with characteristic
and the slow guiding center motion. Fast gyromotion puts grequencies smaller than the gyrofrequency. Introducing the
restrict constrain on the time step if particle simulations |ng rokinetic perpendicular dynamics also extends the gyroki-
the particle coordinates are used to simula_te tr_]e magnetizgtLtic model to arbitrary frequency modes. Since novel math-
plasmas. In the past twenty years, gyrokinetic theory hagmatical techniques, Lie perturbation and pull-back transfor-
begn developed to remove the fast gyromotion from the I("mation, are utilized, the analytical formalism is much more
netic system for low frquency gnd I(_Jng pa}rallel Wa_velengﬂbeneral and transparent compared with previous attempts of
phenomend:’ Gyrokinetic particle simulations, which use gyrokinetic model for high frequency mod®3.

much I.ar%elg_z:lume step than the time scale of ™™ |, his paper, we further extend the gyrokinetic perpen-
gyromotion,’ have been successfully applied to the gic jar dynamics into a kinetic description in the gyrocenter
transport problem of fusion plasmas. Recently, gyrokinetiG,osrginates which includes all the magnetized plasma re-
perpendicular dynami¢$™is identified and developed as an sponses that are contained in the Vlasov—Maxwell system in
important component of the kinetic theory in the gyrocenterg particle coordinates. In essence, the formalism introduced
here is a kinetic description of magnetized plasmas in the
dElectronic mail: honggin@pppl.gov gyrocenter coordinates which is fully equivalent to the
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Vlasov—Maxwell system in the particle coordinates. In par-the perturbed potentialgy; and A;, as well as indirectly
ticular, provided the gyroradius is smaller than the Sca|e’[hrough the gyrocenter-gauge distribution function. The
length of the magnetic field, it can treat high-frequency rangep;yit of gyrocenter-gauge kinetic simplification is to de-
as well as the usual low-frequency range normally associateg@ume the gyromotionithe gyration due to the Lorentz
with gyrokinetic approaches. A significant advantage of thisforce) from the gyrocenter motiofthe orbit motion of gyro-
formalism is that it enables the direct particle-in-cell simula-oper que to the inhomogeneity of the magnetic ieia-
tions of compressional Alfe waves for magnetohydrody- teaq of averaging out the gyromotion. This procedure can
namic (MHD) applications and of rf waves relevant 10 v e done rigorously and systematically using the Lie

plasma heating in_ space and _Ia}t_)oratory plasmas. Thﬁerturbation method. What gyrocenter-gauge kinetic theory
gyrocenter-gauge kinetic susceptibility for arbitrary Wave- otfers is a simplified version of the Vlasov—Maxwell system
length and arbitrary frequency electromagnetic perturbationB

. . : utilizing the fact that the particle’s gyroradius is much
n a homogeneous. magnetized p'?‘sma IS s_hown to recov %aller than the scale length of the magnetic fielgl:, g
exactly the classical result obtained by integrating the ) 0" "1
Vlasov—Maxwell system in the particle coordinates. ThiSE|p/LBO+Bl|<1' As long aseg 18, is small, we are able to
demonstrates that all the waves supported by the Vlasovconstruct a gyrocenter coordinate system in which the parti-
Maxwell system can be studied using the gyrocenter-gaugele’s gyromotion is decoupled from the rest of the particle
kinetic model in the gyrocenter coordinates. We will referdynamics. It is important to notice that the existence of the
this formalism as gyrocenter-gauge kinetic theory to distin-gyrocenter coordinates does not depend on the mode fre-
guish it from the existing gyrokinetic theory, which has beenquency directly. Therefore even when the mode frequency is
successfully developed and applied to many important lowcomparable to or larger than the cyclotron frequency, we can
frequency and long parallel wavelength problefig*where  still take advantage of the gyrocenter coordinates and sim-
the conventional meaning of “gyrokinetic” has been stan-plify the kinetic systemt*!° Three different coordinate sys-
dardized. In this new theoretical approach, besides the usutdms appear in our formalismx,{) is the particle “physi-
gyrokinetic distribution functiori, another indispensable dis- cal” coordinate system. Z=(X,V,,u,&w,t) is the
tribution functionS on the phase space and the correspond¢extended “guiding center” coordinate system in an equi-
ing governing equation is introduced. As shown in SecSll, librium magnetic field. When the time-dependent electro-
sometimes plays an even more important role. The worgnagnetic fields are introduced, we use the “‘gyrocenter” co-
“gyrocenter-gauge kinetic” reflects the fact thiats actually  5,ginate system Z:(ZV” ,ﬁ,EW,t_) to describe the

a gauge function associated with the symplectic gyroce”tegijrocenter motion. Among other things, the most well-

transformation. _ _ , known difference between the guiding center motion and the
_ E;eforelforkmallyr/] |nbtr0(_JIucmg the n}athhematlcal formal- o center motion is the polarization drift motion due to the
Ism, let us look at the basic concepts of the gyrocenter-gaugﬁ“e_dependem electrical perturbation, responsible for the fi-

Kinetic the_ory. As pointed out in Ref. 15 th‘? absence qf thenite Larmor radius correction to drift wavkand the com-
compressional Aflve wave and the difficulties of treating pressional Alfve wavel® We are following Brizard! and

arbitrary frequency modes in the previous gyrokinetic mOd'recent conventiorts in using the terms gyrocenter and guid-

els are fundamentally due to the lack of a systematic treat- g center to distinguish these two different coordinate sys-

. ‘ n
ment for the plasma perpendicular response in these modelf[se.ms

For a kinetic system, the kinetic equation can be viewed as a Recasting the Viasov—Maxwell equations in the gyro-

theoretical description for the response of the plasma, in ) .

g center coordinates should not lose any physics content of the
terms of charge and current densities, to the electromagnetg:ri inal system, if the mathematical procedure is carried out
field. It is not necessary to determine charge density indepen- 9 y ' P

dently, because we can solve for it from the continuity equaporrectly while the_ s!mp||f|cat|on 1S achleyed. n the_
yrocenter-gauge kinetic theory, the information of the ki-

tion after knowing the current density. We can therefore inferdY" ) o N
that the reason that the compressional Aflwgave is not netic system is split into two parts, the usual gyrokinetic

recoverable from the previous gyrokinetic models must béjistrib_utior_lf and the gyr_ocenter-gauge distripution functipn
the lack of complete information about the plasma respons§ While f is gyrophase mdependgnt and mgmly responsible
provided in these models. In the gyrocenter-gauge kinetid®" the shear Alfve wave and drift wavesS is gyrophase
theory, all the information about the magnetized plasma redépendent and solely responsible for the compressional
sponse contained in the Vlasov—Maxwell system is kept by 4\lvén wave. We note thdtandSare not a simple algebraic
complete description of the gyrocenter-gauge distributiorsPlit of the full distribution functlgn in thg partlclg COOI’dI.-
function. The special features that particularly distinguish the"ates, but rather a geometric split of the information carried
gyrocenter-gauge kinetic theory in the gyrocenter coordiPY it- In the gyrocenter-gauge kinetic system, the dynamics
nates from other gyrokinetic theories are the systematic treaf2f f @andS are governed by different kinetic equations in the
ment of the gyrocenter-gauge distribution function and thedyrocenter phase space. Physics on the phase space should
pull-back transformation. Since the construction of the gyro0t depend on the choice of coordinate system. The guiding
center coordinates involves the perturbed fields, the pullcenter coordinate systed (X,V,u,£) and the gyrocenter
back transformations of functions from the gyrocenter coor<oordinate systenZ=(X,V,,u,£) are equivalent to the
dinates back to the particle coordinates must depend on thesual particle coordinate systems (x,v) in terms of de-
perturbed fields. This dependence shows up directly throughcribing the physics contained in the Vlasov—Maxwell
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equation system. We will show in Sec. lll that the magne-magnetized plasmas, we can construct a set of noncanonical
tized plasma linear response, expressed in the susceptibilitphase space coordinates in which the gyromotion is decou-
from the the gyrocenter-gauge kinetic theory recovers expled from the rest of the particle dynamics to any order in
actly the conventional magnetized plasma susceptibility deeBO. This special set of coordinates is called “standard guid-

rived from the Vlasov—Maxwell equations in the particle co-ing center variables” by LittlejohA.The underlying method
ordinate system. Recovering the classical plasmas to look at the perturbation of the phase space Lagrangian
susceptibility completely from the gyrocenter-gauge kineticwhen eg_ is small, and introduce a near identity coordinate

theory guarantees the recovery, in the gyrocenter coordinale;nstormation such that, in the new coordinate system, the
system, all the interesting waves that we have known fro”byromotion is decoupled. The guiding cent&C) transfor-
the classical theory, ?ncluding the.compressional Alfve mation Toc:z=(X,V)—~Z=(X,V,,u,&), which transfers
wave and the Bernstein wave, previously recovered by thgicle coordinatez= (x,v) into the standard guiding center
gyrokinetic perpendicular d_ynamuﬁ%. _coordinateZ = (X,V, ,u,£) can be found in Refs. 1-3, and
Even though all coordinate systems are geometricallyjj Here X is the configuration component of the guiding
equivalent, the computational complexity involved are dif- .onter coordinatey, is the parallel velocityu is the mag-
ferent depending on the specific problems under investiggsetic moment, and is the gyrophase angle. For the present

tion. For applications in magnetized plasmas, the advantag&umose’ we do not need to display the expression except for
of the gyrocenter coordinate system lies at the fact that ifne familiar

and only in this coordinate system the fast time scale gyro-
motion is decoupled from the particle’s gyrocenter orbit dy- X=X=po. @
namics. For low-frequency electrostatic and the shear Alfve The regular phase space is extended to include the time co-
modes, the gyromotion is not important and is naturally de-ordinatet and its conjugate coordinate energysuch that
coupled from the system as if it is completely “averagedtime-dependent Hamiltonians can be treated on an equal
out.” On the other hand, general frequency modes and théoting with the time-independent ones. In the extended
compressional Alfve mode can be easily recovered by in- guiding center coordinatesX(V,,u,&,w,t), the extended
cluding the decoupled gyrocenter-gauge kinetic equation iphase space Lagrangiariis!?
the gyrocenter coordinate system, since the gyrocenter orbit
motion is independent of the gyromotion. The current nu-
merical codes and particle simulation codes based on gyro-
center orbit integration for low frequency electrostatic and
shear Alve modes can be extended to general frequency by
appropr_iately adding in the gyroqenter-gauge component. n T,udg—wdt—(H —w)dr, @)
An interesting fact seldom discussed before is that the e
classical magnetized plasma susceptibility is actually gyrowhere species subscripts are temporarily suppressed, and
phase independent. All the physics contained does not de- b
pend on the distribution over gyrophase. It is therefore natu-  \wW=R+ ~(b-Vxb), R=(Ve)-e,, b=B/B. (4
ral and straightforward to work in the gyrocenter 2
coordinates. As we will see later, it does not take too mucte;, ande, are unit vectors in two arbitrarily chosen perpen-
calculation to obtain the plasma susceptibility after the basidlicular directions, and; ande, are perpendicular to each
formalism is rigorously setup. other. All quantities are evaluated in the guiding center co-
The paper is organized as follows. In Sec. I, we intro-ordinates now.yg gives the extended symplectic structure,
duce the basic analytical formalism of the gyrocenter-gaugéi-=H —w is the extended Hamiltonian, ahktis the regular
kinetic theory. Then, the susceptibility of a magnetizedHamiltonian defined as
plasma is derived from the gyrocenter-gauge kinetic theory mV2
in Sec. lll. We show that this gyrocenter-gauge kinetic sus- H= —”+MB-
ceptibility recovers exactly the classical one. In the last sec- 2
tion, we discuss the particle simulation method for theThe corresponding Poisson bracket is obtained by inverting
gyrocenter-gauge kinetic model and several related issues.the matrixyg;; , which is the coefficient of the differential of
the symplectic structurdye= ¥g;dZ'dz/, 23

Ye=Ye—Hed7

e mc
= EA+ mVHb—,u?W -dX

II. BASIC FORMALISM (F.Gl= — IF 0G_JF 9G
o - . ' mc\ € du  Iu 9€
A. Littlejohn’s standard guiding center coordinates
We assume the equilibrium plasma is magnetostatic and - Cb* .[(VFJFWi X VG+W§”
magnetized, which means, by definition en 9¢ 2
. . L L W P K
= <1]. _— R —— _
o | Lg, @ mB’ IE |V, 9E |V,
Here, p=—vXby/Q is the gyroradius, andBOE|BO/VBO| . JF 9G  JF 4G 5
is the scale length of the equilibrium magnetic fi@g. For aw gt gt gw)’
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where serves as the scalar generating function which generates the
mv canonical transformation. However, in the noncanonical
B* =B+ %V Xb, Bf=b-B*. (6)  cases, itis the vector field that directly gives the transfor-

mation. The extra freedom associated w8hallows us to
pick the gauge which is computationally or analytically ben-
B. Symplectic gyrocenter transformation eficial. There are several different ways to mafe and

When the time dependent perturbed electromagneti€ledr gyrophase independent. We will chodSeand S such
field is introduced, the extended phase space Lagrangian stiffat the transformation is symplectic, that is, there is no per-
gives the dynamics of particles. However, it is perturbedturbation on the symplectic structure
accordingly!®t!

Ye1=0. (12
YE= Yeot Ye1,
Other non-symplectic transformations are also possible. Gen-
ye1= gAl(Tél 1) d(TadX) | — ey (TedX, tydr, grally non-symplectic transformations are more algebraically
involved.
@) Since we choose not to change the time variab@'

where Tg¢ is the inverse of the guiding center transforma- =0. Other components @& are solved for fromyg; =0.
tion,

ToeX=X+po+O(e€p). ®) GX=-

c *

+O(ep),

e
X EA1+VS al (9VH

Expandingd(Tg&X), we obtain

*

e
© GVi= .(—A +VS)+O(6 ),
ye1= ¢ Ar(X+po,)- | (1+ Vo) -dX mg e °
G e eA ap0+ aS 13
+—d +—§ —edy(X+pg,t)dr. 9 “melc™ g TaE) (13
The essence of the Lie perturbation method is to intro-
. . . S e (e dpg IS
duce a near identity transformation from the equilibrium Gé=——|=-A;- —+—|+0(ep),
guiding center coordinated=(X,V,u,&w,t) to the gyro- mcic = du  du
center coordinate = (X, V” w,£,W,t) when the perturbed S

field is present such that the transformed extended phase gw—=_ _—
space Lagrangiay can be gyrophase independent. at

For the transformation S ) )
The transformed Hamiltonian is thus uniquely determined by

Z'=(e®2)'~Z' +G(2), (10)  the choice ofyg;=0.
the leading order transformed extended phase space La-
grangian is He =Hg — G &XIEO
Ye1= Ye1—igweo+ dS= Fe1—Head, (11

_ e _
where wgo=dygo, S is an arbitrary gauge function, and =eha(X+po,t) = CAUXFpo. 1)

igwgg IS the interior product between the vector figdand _

the two-formwg,. The fact thatiSis a gauge transformation {X+po,Heo} —{S,Heo}, (14)
was pointed out by Littlejohn in Ref. 25, where the Lie per- )

turbation method for Hamiltonian system in noncanonicalin Which

coordinates was systematically introduced. It was also _ _

pointed out by Hahm in Ref. 9, where this method was first ~ {X+ pg,Hgo} =V +vy, (15
applied to the gyrokinetic theory. This point of view was

subsequently adopted by Brizald*??%In this paper, we re- Where

fer Sas the gyrocenter-gauge to reflect the fact tgis the o -

gauge transformation in the process of constructing the gy- V=V, +V,b, V,={py,Heo}. (16)
rocenter coordinates from the equilibrium guiding center co-

ordinates and the perturbed fiefd3/Ve note that the Hamil- In the calculation related to the gyrocenter transformation,
tonian Lie perturbation procedure in noncanonicalWe Will only keep the lowest order in terms ef, because
coordinates is different from the conventional canonical cothe background finite Larmor radigsLR) effects normally
ordinate transformation, which can be characterized as thog¥e not important.

transformations q,p)— (Q,P) which satisfy pdg=PdQ Hgq has to be gyrophase independent as well. There is
+dS for some scalais?%02829|n the canonical limit,S  another freedom here. We choose
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— — —e However,f andf cannot provide all the information about
He1=(eh1(X+po,t) —V- EAl(X+F’0't)>' (17 the distribution function in the phase space. The third kinetic
equation in the gyrocenter-gauge kinetic theory is
where ( Y=(1/27)[2"d¢ represents the gyrophase averag-
ing operation. This leads to the equation determining the?_3+- S . IS . dS

gauge functiors at " Tax +V”&_\/H +¢ 9E

aS 9S IS aS ~ e—r
{S!HEO}:Q_g+_+__'{X1HEO}+T{VH’HE0} :e¢(x+p01t)_EV'A(X"_pO!t)- (22)
J ot A

In the gyrocenter-gauge kinetic theory, the gyrocenter-gauge
function S plays a significant roleSis not only a gauge, but
more importantly Sis identified as the distribution function
o . over the phase space which carries valuable physical infor-
where é,(X+ po,t) andV-A;(X+py,t) are the gyrophase mation about the kinetic system. In many applications, such
dependent parts of;(X+pp,t) and V-A,(X+po,t), re-  as the compressional Alfmewave and the Bernstein wave,

~ @ — e——
:e¢1(x+p01t)_EV'Al(X_'_pO!t)! (18)

spectively: all the physics is hidden i instead of the gyrokinetic dis-
o o o tribution functionf. Equation(22) may look similar in form
B1(X+ po,t)= 1 (X+ po,t) —(b1(X+ po,t)), and dimension to E(7) for a scalar field5, in Ref. 30 in the
. - o context of free energy methdd.The scalar fieldS, in Ref.
VA (X+po, 1) =V-Ay(X+po,t) —(V-Ay(X+pg,t)). 30 is a first order generating function, which generates a

(19 canonical coordinate transformation, and therefore induces a

Here, we only carry out the analysis to the first order W(_:‘trf:msformation from the perturbed particle distribution to the
therefore, study linear theory in this paper. Second 6rdetrmperturbeq particle distributioﬁ Clearly, our gyro—cent.er
nonlinear, theory is readily available by carrying out thegauge function and Eq22) are different from the generating

. . function S; and Eq.(7) in Ref. 30. First of all,S in our
?endailgjsls to the second order, but the algebra is SomeWh?(lﬁrmalism is the gauge function for the noncanonical gyro-

Since the transformation we have chosen is symplecticCenter coordinate transformation, whifg in Ref. 30 is a

52,=0, the Poisson bracket in the gyrocenter coordinates ig;eneratlng function _for a canonical transformation. Sec-

. - . . ondly, S; in Ref. 30 in the context of free energy method
the same as that in the guiding center coordinates, which is_. . .
given by Eq.(5). After obtaining the desired gyrocenter co- exists before the construction of gyrocenter coordinates or
ordinates W'e Will «push forward” objects on the original even when the gyrocenter coordinate system does not exist at

. : . - Il. Of course, after the gyrocenter coordinates are con-
particle coordinates onto the new coordinates. The objects 0 . .

e : . Structed, one can try to expreSs and Eq.(7) in Ref. 30 in
physical interest here are Maxwell's equations and the Vla; . ; .
sov equation the gyrocenter coordinates with the purpose of developing a

We will use A and ¢ to notate the perturbed field here- free energy method for the low-frequency gyrokinetic

0 H y
after; the subscript “1” will be dropped. Unless clarity re- system3, a goal different from ours. As usual, Maxwell's

quires us to use the barred notation, we will also drop theequatlons are used to complete the gyrocenter-gauge kinetic

bars for the avrocenter coordinates hereafter System. It is not clear how to write Maxwell's equations
ay ' directly in the gyrocenter coordinates. But the straightfor-

ward solution is to write Maxwell’s equations in the particle
coordinates first, then relate the charge and current densities
C. Kinetic equations, pull-back, and push-forward to the distribution functions in the gyrocenter coordinates,

In its geometric(coordinate independenform, the Vla-  1-€- f, f, andS o
sov equation i§F,Hg}=0. In the gyrocenter coordinates, The Poisson equation is

andF can be decoupled becaus¢ and Hg are gyrophase 19
independent_ P : rop —V2¢(r,t)=4772 ef d3vf(r,v,t)+ E EV'A(M)'
i
[FHe}=0, {FHeb=0, (20 23
where

whereF=(F), andF=F—F. Let F=Fy+f, whereF, is
the equilibrium distribution, and is the perturbed distribu- 3 I T 1y
tion, we have J d3vf(r,v,t)= | dSZ[TEF1(Z,)8(TgdX—r). (24)

of . of . of _ Ampere’s law is

E+Xa_x+v\\§_\/”:_{F01H1}v i

B B B _ (21) VX (VXA(r,t))= ?2 ej d3wi(r,v,t), (25)
of 5 of v of . of _ [ H i

gt T Aox T ”5_\/”+§a_§__{ o Ha} where
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5 . . . After the pull-back off into the particle coordinates, the
f d vvf(r,v,t):f d°ZV e[ TeytI(Z,1) 8(TgeX—T). configuration variable of the particle coordinates in Max-
(26)  well's equations can be viewed as a dummy variable, and
can be replaced by the configuration varialilef the gyro-
In the above equationsd®Z is understood to be center coordinates. As a result, we effectively obtain the

(Bff/m)d®XdV|dudé. Ty is the pull-back transformation, push-forward of Maxwell’s equation on the gyrocenter coor-
which transforms the perturbed distributiérin the gyro-  dinates:

center coordinates into that in the guiding center coordinates.
TGC is the_ inverse oﬂ'qc that trans_f(_)rms the particle _phyS|- —V24(X' 1) 47T2 f d°Z[T%,11(Z, t)5(TGéX X")
cal coordinatesr(v,t) into the guiding center coordinates.

We assume the guiding center transformatiog: and the 14

corresponding pull-back transformatidrg,, and the gyro- +Z —V A(X' 1), (31)
center transformatio gy and the corresponding pull-back c ot

transformationTg, are one-one ontébijective). Generally, e

for a_mac.roscopic.quantitQ(r) in.the particle coordinates Vv x(VXA(X',t))= TE ef dGZVGC(Z)[T’ng](Z,t)
and its microscopic counterpart in phase spgtev), we ]

have 1!

X 8(TgaX—X"). (32)
Q(r)=f q(r,v)fpe(r,v,t)d% 1. SUSCEPTIBILITY
6 As an electromagnetic medium, a plasma can be faith-
ZJ a(x=r)q(r,v)fp(zt)d°z (27) fully characterized by its susceptibility. For example, all the
waves supported by plasmas can be derived from the plasma
In the guiding center coordinat&s= (X,V,,u,§), susceptibility. To a large degree, a theoretical model for plas-

mas can be characterized by the susceptibility it predicts. In
Iy (46 this section, we derive the susceptibility for a magnetized
Q= J [Tee D) fedZ, Do(TeeX—NdZ. (28 plasma from the gyrocenter-gauge kinetic model, and prove
that it recovers exactly the well-known result derived from
the Vlasov—Maxwell system in the particle coordinates. By
this recovery, we show that gyrocenter-gauge kinetic theory,
as an extension of the gyrokinetic theory, includes all the
Q(r)=f [TEc al(D)[TEyfoy](Z,1) 8(ToiX —r)d8Z. physics that can be described by the Vlasov—Maxwell sys-
(29) tem in the particle coordinates.
We consider a homogeneous magnetized plasma with a
The pull-back transformation from the gyrocenter coor-constant magnetic field in the, direction. For a linear per-
dinates to the guiding center coordinates is easily obtaineturbation of the form expk-r —iwt), we can always choose
from the expression foG given by Eq.(13) the coordinate system such thkj=0, k, =k,, and Kk
=k,. By definition,

Replacingfs(Z,t) by its pull-back from the gyrocenter co-
ordinates, we get

ayF=F+LgF »
b =7 (33
—F—B—x A(X+pg, t)+ VS VF
! To find out y, we only need to expregsin terms ofE. Our
B* 4S starting point is the pull-back formula
mBf Vv, _ . ]
e B* 1= ef (VL +VD)[Tey(Fot+f)I(Z) 8(X+po—r)d°Z
1
wherej, is the first order current in the laboratory franje;
i ‘9”0 IS ‘9_': represents the first order of the expression ingi¢leln ad-
+ el g AXEPo D) - : :
€ 55 I dition, we have used the relationship

£O(e). (30 Ticlv=V, +Vb. (35

e &po dS| dF
| GAX P05 oo
K As usual, it is reasonable to assufig=0. Then, the
whereL gF represents the Lie derivative Bfwith respectto  kinetic equation forf is homogeneous and does not depend
the vector fieldG. As we will see in the next section, the on the perturbed field:
pull-back transformatiog, and therefore the gyrocenter- ~ ~ ~ -
gauge distributiorS lie at the center of the gyrocenter-gauge ~ ¢f . of . of  of

A +X—<+V+E—=
kinetic theory. at XX V“avH gag
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For the initial value problemf is purely a residual of the

gyrophase dependent part of the initfal If we assumef

=0 initially, thenf vanishes all the time. The physics for the
linear susceptibility does not depend on initial condition. We

can therefore lef=0 andf=f for the current purpose. Use- we easily know the solution fdfr
ful information about the gyrophase dependent part of the

distribution function is carried b.
The integral in Eq(34) is related td~, f, andSthrough

JF
[T Y(F0+f)]1—f+—b A(X+po) + — vs} -
I
e 0"p0 078 07F0
37)

To solve forf andS, we first calculate the linear drivé,
and eg(X + po.t)—elcV-A(X+ pg,t). Choosing the coor-
dinate system fo€ such that

V,=-V,[gsiné+e cosé],

Vi :
po=ﬁ[ex cosé—g, siné]. (39
We have
B(X+ po) =€V $(X),
(B(X+po))=(e” ") (X)=Jo(X),
p v (39)
A(X+po) = (€2 = Jp) p(X),
Jo=Jo (Vakl).
Similarly,
V-AX+ po) = VA (X+po) +V - AL (X+po),
(Vi AL(X+po))=—V, 1A,
VA (X+po) = — M08 singA,
— ("¢ cosg+ )V A, (40)
Jl:Jl(VBkl),
N =pok, = poKy-

The expressions foH; and e¢(X+ pg) — e/cﬁ(x + po)
are

Hl:

Vi \a
& Jo| = AT IiAy |,

~ e —
€B(X+po) — _V-A(X+po)

. Vv
=e (el)\ COS§_JO)< ¢_ ?lAZ)

| " - v
+er cosgsinngAx_i_(ep)\ C°S§COS§+31)%Ay

(41)
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From the kinetic equation fdr
ARVINS PN 42
ot TVib V= b VR (42
ook Via )+ Yega, o 4s
T m(o—k,V,) |70 ) R EV “3

One quickly notices that for those modes whth=0, such as
the compressional Alfuve wave and the Bernstein wave,
=0, all the physics must be inside the gyrocenter-gauge dis-
tribution functionS.

IntroducingS* defined by

(44)
we have the kinetic equation f@&* from that forS

JS*
Q—g—l(w k,V,)S*

=ed) 005‘5[ H(X)— %V-A(X)}

. 1 vV, .V,
=edh cos¢ | p— S VaAz |+ Acsiné+ -~ Ay cosg|.
(45)

The pull-back transformation depends only 8h due to a
cancellation

¢ e FO |k &FO
[Tey(Fot )]1— AAX+po) = 6V| 3VH
(9[)0 (98* (9F0
me A(X Po) - f ag}_

(46)

As a consequence, all the physics is included®in Using
(A9) to expand exph cosé), we can solve Eq45) for S*:

e "
St=_
3 |

I,(in)ené

- __A
i(n—w+k,V)) ¢

C

. OSERE
—2(n+1-w+k,V))

In(in)gn—Deé
—2(n—1-w+k,V))

. [a(in)gnFDE
2in+1-w+k,V))

Vi

Ia(in)e(nDe
2i(n—1—w+k,V))

Vi

(47)

VAR
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where o=w/Q and k,V, NV =k,V,/Q}. We can re-arrange 1)
S"=*_ using(A16)—(A18) to get o 0 0 Kk
- - iv[0o 2 0 o
el weix| 0 - =
Qn=== (i(n—w+k,V,) c
( | zVl 0 0 2 _kZ
nly(in)e™ v, ¢
—iN(n—w+k,V,) c x Furthermore, to break the expression into manageable pieces,
ne we split x;, into two parts,
[L(iNems v,
— A, (48) =Xt Xp (52
i(n—w+k,V,) ¢ Xo™ Xp Xé
where ,\/‘F‘, and Xﬁ are terms proportional t@F,/dV, and
= ' dFqldV, , respectively.
n & 0 1
ﬁ € nla(M)e" _ ﬂA Let’s start from the complete expression for
(75 Q n=-—wx (n_a‘F kZV”) C

n2|n(i)\)ein§ V, jl(r):ef 5(X+po—r)d62(vi+vub)

+ —
—NMn—w+k,V,) ¢ ik JF
(n @ z H) AZ(X+p0) av Z &VO
’os iné I I
nipive v, } 9
n—w+kV,) ¢ i Po 95" | IFg
(N—w+k,V)) + o GAXF o) &g ag}

Our strategy here is to calculate the current through the IF
pull-back formula in terms of potentiak$ and A, and find —ef dve ro V(VL+V|b)[ A, (X+ po) =
- . Vv,
out the susceptibility, defined by

|k (?FO e &po
r 2y — AX+ Po
A, 8VH ( Po) 0E
iw A
e Ay IS+ oF
=47 A, | 0 +—}—°] , (53)
é 7%

where “‘|«_,"" means replacingX by r after the velocity
Here, subscript p” refers to the fact thaly, is the suscep- integral is finished. The expressions ® anddS*/d¢, Egs.
tibility matrix connectingj and potentialsp andA, while x  (48) and(49), can be substituted into the above equation to
is reserved for the susceptibility connectipgand electric  expresg4(r) in terms of the potentialg andA exclusively.
field E. x, and x are simply related by First, we look at thelFq/dV, term inj,(r)-b

b——A,

C

ike " I,(iN)ené
mQ) n:E—w {

i(n—w+k,V))

Ly . e
f Vidvif dV”f d§V”— E I (—in)en §{el)\ cosé A 4
Y mc

TN

nJ3(\) k,e At iJ;(leng kaLeA
—(n—w+k,V,) kymc —(n—w+k,V,)) Qmc

nd™I(in) Vv énelriing g v
NIV
—iN(n—w+k,V,) c i(n—w+k,V,) c

Yy

oo ) F
ZGZWJ VLdVLf dV”VH 0 2 y
0 —

IV n=-=

J()\) ~w) e (N) ke
- A+—

2 —— (54)
(n w+kV)me ~ (n—wt+k,V,) mQ

In the above derivation, we have used identi}A12) for the A, and ¢ terms,(A13) for the A, term, and(A5) for the A, term.
This equation gives the third row o, .
For thedFqy/dV, term inj,(r)-b, we have

Downloaded 20 Oct 2000 to 198.35.7.82.Redistribution subject to AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html.



Phys. Plasmas, Vol. 7, No. 11, November 2000 Gyrocenter-gauge kinetic theory 4441
=00

> * 2 (?FO i ., €
eJ devJ dV”f dev, > (—in)enE— émsf (—Aysiné—A, cosé)
0 —o 0 oV, mV, p/'=_x mc| c Q

n’

n=w . f . ; . i
e ni(in)ené \Y n?l,(in)ené v niZ(in)e"é v
= E n(_ ) __HAZ n(_) _LAX_'_ n_ _LAy
Q = (N—w+k,V)) c —Mn—w+k,V,) ¢C (n—w+k,V,) ¢
e? e IFo V, "o J2(N) \Y w—k,V nJ2(\)V
:—2wf V.dv, de 0 N[ Vi | emk ROV
m VL VL n=-—o= (n (,L)+k VH) C —(n—a)-i-kZVH) AC

i(w—k,V J, (NI (MV

(w_z n) n(N) n( ) J_A (55)
—(n—a)-f-kZVH) C

where we have used identitp12) for the ¢ and A, terms,(A12) and(A3) for the A, term, and(A13) and (A4) for the A,

term. The third row 01‘)(L can be easily read off from the above equation.
The algebra mvolved for the perpendicular componeng,aE a little bit more complicated. For théF,/dV, term in

j1(r)-e., we have

y

oFo " ike o | Ia(in)ené %
ef devJ dV”f devi—2 > —1,(—in)eM Esing e”‘COSf—AZ = % b——A,
IV n'=—o mc mQ n=== | i(n—w+k,V,) c
ne™(iN) le . énl(ing g v,
—iN(n—w+KV,) €  i(n—w+kV,) ¢
= = n2J3(\) k,eQ inJ,(M)J(N) ke
=e2wf viva dv“vL Fo Z T At T A
0 - n=—=| —(n—w+k,V,) kyvV.mc —(n—w+k,V) kmc
nBZ\)(n—w) eQ nJ2(n) ke
b At —— (56)
To derive this expression, we have first used the following identity:
n=oo n=ox
nly(—iN)
> 1,(—iN)EMEsing= E n( )e'”f, (57)

n=—o

and then(A12) for the A, term, (A13) for the A, term, (A12) and(A3) for the A, term, and(A13) for the ¢ term. This result

gives the first row ofy,.
For thedFqy/oV, component in.(r)-e., we have

- - oFe B "7 —in'l(-in) . efe. v,
el v.dv f av, [ "aev, 2O —e'” € Zgheosi_— (A sing—A, cos
J;) 1 1 II f 17 Vi mVLn ~ N mel ¢ 0 ( X f y 5)
- o o o
e nl(in)ene \Y nZl,(in)eé v nl/(in)ené v
) n(_> Vi, NGNS
Q = (N—w+k,V)) c —Mn—w+k,V,) C (n—w+k,V,) ¢

2

e o n=r
o[ viav [ av
™ LUV H&V 2 {

m L h=

n2Ja(\)
An—w+k,V))

VH
- —A,
Cc

w-kV, N2V, R
_(n_a'f' kZV”) )\ZC

X

i(o—kVy)  NI(VIIV,
—(n—w+k,V,) \C

where we have use@\12) and(A6) for the A, term,(A13) and(A4) for the A, term, and/A12) for the ¢ andA, terms. What

we get from this equation is the first row ;vf;
To obtain the equation fgr - e,, we first invoke

(58)

Yy

n=o

e_i}‘COS§COS§= 2 |r’](_i)\)én§_ (59
n=—x

Downloaded 20 Oct 2000 to 198.35.7.82.Redistribution subject to AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html.



4442 Phys. Plasmas, Vol. 7, No. 11, November 2000 Qin, Tang, and Lee

Then, for thedF,/dV, term

n'=w

. ’ e
ef VLdVLf an dfvi— 2 —|;‘,(—i)\)én g‘en\cosg_AZ_,_
Vv mc

IFy " [INIA(N)ILN) kaLeA JI2(N) kZVLeA
NV n== | (n—w+kV,) NAme © (n—w+k,V,) Qmc

p——A,

ik,e "o I,(in)ené
s | /

i(n—w+kV))

mQ n=—=

neel(in) Vv dél/(in) Vv
. _n( ) _LAX_’_. _n( Vi
—iN(n—w+k,V)) ¢ i(n—w+k,V,) c

Yy

:ezﬂ'J VLdVLf dV”Vl y
0 —

_iJn(K)Jé(K)(n—@i 1Ja(M)In(N) ke

— A~ (60)
(n—wtk,V) mc (n— w+kV, V) Qm

where we have use(d\14) for the ¢ andA, terms,(A15) for the A, term, andA14) and(A4) for the A, term. This result gives
the second row o
For thedF /ﬁVL component

n'=ow

e
—1,(—iN)dn € e'“°sf Agsingé—A, cos
Vv, mVLn:z_w w7 mc[c (- & £)

n=o . ; . : . '
e ni,(in)ené \Y n?l,(in)ené v ni’(in)ené v
L L A DR N A, ST 7O
Q Ze[(n—w+k,V, V) c —ANn—ow+k,V,) C (n—w+k,V,) ¢
e? OF o " | =ind,(N)JN(N Vv i(o—kV,) nJ,(M)IL(NV
=—2’n’j vldvlf av—2 > I [y Vi |y L@k AR )IWOIY,
m IV n===| (n—wt+k,V) c (N—w+k,V)) \C

w—kV,  J2(NV,

_ i 61
(N—w+k,V)) c ey

where we have use@14) and(A7) for the A, term, (A15) and(A8) for the A, term, andA14) for the ¢ andA, terms. What
we get from this equation is the second row,

Assembling the above results together, we obtain the following result for the susceptibility in the gyrocenter-gauge kinetic
theory:

Xo=XpT Xp (62
| Ame? TS = - 1 dFq
Xo=T 27Tf Vidvif dV”:—
|wan:*°° 0 —® (n_(,l)‘*'kZVH) (9V||
nJa(Nk, indy(M)JINNK, . —nFN)(n—0)Q —nJ(N)kQ
—V? V2 vV, _
\2c \C AC Ky
ind,(\)JL(NK JI2(Nk J,(M)ILN)(N—o)Q _
S e Y LA AL V. idaM)IVKV (63)
AC c (o]
nJ2(\)k iJ,(N)J" (MK -2 (n—o)Q
n}\c aa I % WV ) c I —J2(Nk,V,
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4me® " oo oo 1 IF
b= > 27Tf vidvif davi——— —
iwm) n=-c 0 - (Nn—w+k,V,) vV,
23500 (0—k,V)) inJn(M)JILN) (0= k,V)) n2J5(\)Q —n?J500)Q
5 2 A —QV I
\2c AC AC A
ind,(M)J (M) (w—k,V J2(N)(w—k,V —ind,(M)JL(N)Q
_indy(M)I(M) (0 —k, ”)Vi n (M) (w—k, H)VL n(M)JIn(N) V. ind (02000
AC c C
nJﬁ()\)(w—szH)V iJn(x)J;(x)(w—ksz)V nJZ(\)QV? —nJZ(N)QV,
AC : c : cVv, Vv,

(64)

Finally, Eq.(62) recovers the classical result derived by approach in treating inhomogeneous magnetized plasmas,
integrating the Vlasov—Maxwell equations in the particle co-while all the physics are kept intact. This is because the
ordinates along unperturbed orbit. To see this, we take thanperturbed orbit in the gyrocenter-gauge kinetic system is
result for x5 from the Eq.(10.45 of Ref. 32, and transform it much simpler. It consists of two components, the gyromotion

into xs , by and the decoupled gyrocenter motion. The fact that gyro-
center motion is decoupled from the gyromotion enables us
0 0 - Ky to eliminate the gyrophase varialdeén the kinetic equations
¢ for f and S,,. In this sense, the gyrocenter-gauge kinetic
] ) model enjoys the same simplification and benefit as the con-
Xsp=IXs® 0 c 0 0 : (65 ventional low frequency gyrokinetic models do, and further
more, extends this benefit and simplification to arbitrary fre-
0 0 2 —k guency modes.
c For example, let us consider the case wh#wy/=0 for
This xs,p is exactly the same as the result we have obtaine§e perturbed field. We use this example to illustrate the
in Eq. (62) from the gyrocenter-gauge kinetic theory. basic feature of particle simulation method for the
gyrocenter-gauge kinetic system. In the paper, we do not
IV. DISCUSSION intent to give a comprehensive account on the gyrocenter-

gauge particle simulation method, which will be the subject

Gyrocenter-gauge kinetic theory is developed as a kiof future publications. For the current case, the kinetic equa-
netic theory in the gyrocenter coordinates, fully equivalent tajon for Siis
the Vlasov—Maxwell system in the particle coordinates. Tak-
ing advantage of the existence of the gyrocenter coordinate‘EJr ' ‘9_S+\-/ ‘9_S+Q‘7_S
in magnetized plasmas, the gyrocenter-gauge kinetic theoryt axX lov, 1713
simplifies the Vlasov equation by geometrically decoupling
the gyrophase-independent part of the distribution function _—g
from the gyrophase-dependent part. Maxwell's equations in
the particle coordinates can be easily pushed forward onto vV
the gyrocenter coordinates by using the pull-back formula, + (e cos¢ cos§+Jl)—LAy}, (66)
which relates the charge and current densities to the distri- ¢
bution functions in the gyrocenter coordinates. As an extenwherek, is understood to be-id/dx. Since in(and only in

sion of previous gyrokinetic models, the gyrocenter-gauggne gyrocenter coordinateé andV, are gyrophase indepen-

kinetic theory emphasizes the decoupling of the gyrophasgent, gifferent gyrophase harmonics ®are decoupled. Let
dependent and independent informations, and the importance

of the gyrocenter-gauge distribution function. Gyrocenter- "y ine

gauge kinetic susceptibility is derived for homogeneous S:n;_m Sne"™. (67)
magnetized plasmas, and it recovers exactly the classical re-

sult derived by integrating the Vlasov—Maxwell equations inUsing

) \Y
+eh Cc’sgsingTLAX

, V
(é““f—Jo)(dw —A,

the particle coordinates along unperturbed orbit. h=c
Even though only the susceptibility for homogeneous — ghcosé— > | (j)\)dné,
magnetized plasmas is derived here, the equation system in n=-—c
Sec. Il is valid in general geometry. We expect the n=o _
gyrocenter-gauge kinetic equation system to bring substan- g o8¢ gin g= E —nln(in) gné (69)
tial simplification compared with the usual Vlasov—Maxwell n=—o A '
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n=e number of simulation particles. If using the straightforward
drcostcosg= > MOSEES particle simulation for Vlasov—Maxwell system in the par-
n=-e ticle coordinates, we have to increase the number of simula-
we easily have the decoupled equationsSgr tion particles many times to achieve desired resolution in the
gyrophase coordinateé Obviously, the gyrocenter-gauge ki-
So=0, netic particle simulation requires less memory usage and
ds, v nl(iN) V computing time. Secondly, the gyrocenter-gauge kinetic par-
. . I n 1 . . . . , .
gt +inQS,=¢ |n(l)\)( d— FAZ) B ?AX ticle simulation _onIy advances pgrtlcles phase space coordi-
nates along their gyrocenter motions, which are much slower
A motions with larger scale length compared with particles’
+Ir,1(|)\)TAy , n#0, (69  motions in the particle coordinates, which each simulation
particle has to follow if the simulation is carried out for the
d o .9 . 9 Vlasov—Maxwell system in the particle coordinates. There-
aEEJ“XﬁJ“VHa_VH- fore, gyrocenter-gauge kinetic particle simulation requires
much less computing time to advance simulation particles.
The above kinetic equations f&, do not involve the gy- The formalism presented in this manuscript can be easily

rophase variable, and the characteristics of the equationsextended to nonlinear case by carrying out the transforma-
are particles’ gyrocenter orbits. However, to solve these Kitjon petween the(equilibrium) guiding center coordinates
netic equations usi_ng particle simulation method, the timgypg the(perturbedl gyrocenter coordinates to the second or
stepAT for advancingS, has to satisfyAT<1/n(}, even  phigher order. The basic procedure is similar to those in Refs.
though the gyrocenter orbit motions are slower and satisfy 9_12. |n fact, the noncanonical Lie perturbation methods
) used here was originally introduced as an efficient and sys-
X—o + V|75 <n(}. (70 tematic approach for the nonlinear gyrokinetic systems. In
X M the nonlinear case, the kinetic equati d th h-
, quations an e pus
This is because terim()S, and the terms depending aft  forward of Maxwell’s equations keep the same forms, except
andA, are fast varying. Then, in terms of particle simulation that in the pull-back of distribution function nonlinear per-
for arbitrary frequency modes, what is the simplificationturbed fields appear. This is a direct result of the construction
brought by the gyrocenter-gauge kinetic system comparedf the gyrocenter coordinates up to the second or higher or-
with the Vlasov—Maxwell system in the particle coordinates?der.
To solve the kinetic equations férandS,,, we truncate the So far, we have not considered collisions in our system.
equation system fo8, and keep those important harmonics The gyrocenter-gauge kinetic system in the gyrocenter coor-
for the problem under investigation. Along its gyrocenterdinates developed here is thus parallel to the collisionless
orbit, each particle carries thos, kept in the system, as Vlasov—Maxwell system in the particle coordinates. For
well as the usual distributiof. For high-frequency mode many problems of wave—particle interactions and instabili-
(w~nQ, for some integen), we have to use small time step ties, collisions are not important, especially for the high-
(AT<1/nQ) to advancd andS, along particles’ gyrocenter frequency range. However, for applications such as neoclas-
orbits. Since the gyrocenter motions themselves are slowesical transport, it is necessary to include collisions in the
motions with larger scale length, it is not necessary to usgyrocenter-gauge kinetic system. The exact expressions of
small time step to advance particles’ gyrocenters in the gyeollision operators in the gyrocenter coordinates should be
rocenter phase space. Particularly, we can usdiabatic ~ rigorously derived bypushing forwardthe corresponding
gyrocenter pusherwhich advances particles’ phase-spacecollision operators in the particle coordinates. Compared
coordinates in larger gyrocenter time step, and between theith the collision operators in the particle coordinates, one
gyrocenter time step$andS, are advanced many time steps distinguish feature of the collision operators in the gyro-
in smaller gyrofrequency time step while particles’ phasecenter coordinates is their explicit dependences on the per-
space coordinates are kept constant. The slower gyrocenttrbed fields and background inhomogeneities through the
time step is determined by the gyrocenter orbit motion,pull-back transformation. Since the collision operators nor-
whereas the faster gyrofrequency time step is determined byally involve high-order differentials in the phase space, the
the harmonics numban. In principle, we can use different construction of the gyrocenter-gauge collision operators will
gyrofrequency time steps for different harmon&s In each  be in the high-order jet space. In terms of particle simulation,
gyrofrequency time step, Maxwell’s equations in the gyro-once the expression of the collision operators are obtained,
center coordinates has to be solved to update the fieidd  they can be simulated by the usual Monte Carlo meffiod.
S, enter Maxwell's equations through the pull-back formula, Work in this direction will be reported in the future publica-
which can be numerically implemented by the well-knowntions.
multi-point averaging techniqu®. The computational sim-
plification brought by the gyrocenter-gauge kinetic system is
twofold. First, the gyrophgse coorglina.feis expliqitly re-  ACKNOWLEDGMENTS
moved from the dynamic equations for particles. The
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APPENDIX: IDENTITIES FOR J, AND Iy

The following identities forJ,, andl,, are used:
For J,

J_n(X)=Jn(—x)=(=1)"In(x), (A1)
Jn(=x)=(=1)"" (), (A2)
2 nJ2=0, (A3)
2 3.3;=0, (A4)
> 2=1, (A5)
n=c 2
S =, (A6)
2 nJJ;=0, (A7)
i 1

12_ "
2 W=5 (A8)

Forl,

g cosé= _2 I,(N)€ENE, (A9)
Ia(x)=i""J,(ix), (A10)
() =i"""1](ix), (A11)
In(iX)] _p(—i1X)=J3(X), (A12)
()1 p(—1x) = =13 0(x)I4(x), (A13)
2 (=) (ix) =13 (%) I)(X), (A14)
12 (—ix)1(ix)=3/2(x), (A15)

Gyrocenter-gauge kinetic theory 4445
2n
ln-100 =120 = = 1a(X), (A16)
In—100) + 11 a(X)=215(X), (A17)
, n n
In=ln-200 = L Ta(¥) =1n2) + 5 1a(X). (A18)
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