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Abstract. Interesting plasmas in the laboratory and space are magne-
tized. General gyrokinetic theory is about a symmetry, gyro-symmetry,
in the Vlasov-Maxwell system for magnetized plasmas. The most gen-
eral gyrokinetic theory can be geometrically formulated. First, the
coordinate-free, geometric Vlasov-Maxwell equations are developed in
the 7D phase space, which is defined as a fiber bundle over the space-
time. The Poincaré-Cartan-Einstein 1-form pullbacked onto the 7D
phase space determines particles’ worldlines in the phase space, and re-
alizes the momentum integrals in kinetic theory as fiber integrals. The
infinite small generator of the gyro-symmetry is then asymptotically
constructed as the base for the gyrophase coordinate of the gyrocenter
coordinate system. This is accomplished by applying the Lie coordinate
perturbation method to the Poincaré-Cartan-Einstein 1-form, which also
generates the most relaxed condition under which the gyro-symmetry
still exists. General gyrokinetic Vlasov-Maxwell equations are then de-
veloped as the Vlasov-Maxwell equations in the gyrocenter coordinate
system, rather than a set of new equations. Since the general gyrokinetic
system developed is geometrically the same as the Vlasov-Maxwell equa-
tions, all the coordinate independent properties of the Vlasov-Maxwell
equations, such as energy conservation, momentum conservation, and
Liouville volume conservation, are automatically carried over to the gen-
eral gyrokinetic system. The pullback transformation associated with
the coordinate transformation is shown to be an indispensable part of
the general gyrokinetic Vlasov-Maxwell equations. Without this vital
element, a number of prominent physics features, such as the presence
of the compressional Alfvén wave and a proper description of the gy-
rokinetic equilibrium, cannot be readily recovered. Three examples of
applications of the general gyrokinetic theory developed in the areas of
plasma equilibrium and plasma waves are given. Interesting topics, such
as gyro-center gauge and gyro-gauge, are discussed as well.
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1 Introduction

General gyrokinetic theory is about a symmetry, gyro-symmetry, in the Vlasov-
Maxwell system for magnetized plasmas. In addition to its theoretical importance
and elegance, gyro-symmetry can be employed as an effective numerical algorithm
for modern large scale computer simulations for magnetized plasmas. Histori-
cally, gyrokinetic theory has been developed in various formats in different con-
text [2,4,8-10,12,15,18,22,24,25,27,28,30-32,35-37,41,43,45-51,53, 54, 56,59, 60].
However, gyrokinetic theory can be put into a form much more general and geo-
metric than those found in literature. Here, we will geometrically develop such a
general gyrokinetic theory, and leave the computational side of the story [5,11,13,
14,19,21,23,33,34,42,57] to Ref. [58].

2 Geometric Vlasov-Maxwell equations

Since we are looking for the gyro-symmetry of the Vlasov-Maxwell equations,
it is necessary to first develop a geometric point of view for the Vlasov-Maxwell
equations. Because it turns out that the geometry of the Vlasov-Maxwell equations
is best manifested in the spacetime of special relativity, we will start from the
relativistic Vlasov-Maxwell equations. The phase space where the Vlasov-Maxwell
equations reside is a 7-dimensional manifold

P={(z,p) |z €M, pe T;M, g~'(p,p) = —m*c’} (2.1)

where M is the 4-dimensional spacetime, T*M is the 8-dimensional cotangent bun-
dle of M, and ¢! is the inverse of the metric tensor of M defined by

(97 g5y =65 . (2.2)
The phase space is a fiber bundle over spacetime M (see Fig.1),
m: P— M. (2.3)

The worldlines of particles on P are determined by the Poincaré-Cartan-Einstein
1-form constructed as follows. First, take the only two geometric objects related
to the dynamics of charged particles, the momentum 1-form p and the potential
1-form A on M, then perform the only nontrivial operation, i.e., addition with the
right units, to let particles interact with fields,

@=§A+p. (2.4)

4 is what we call Poincaré-Cartan-Einstein 1-form on the spacetime M. In a Carte-
sian inertial coordinate system z* (u = 0,1,2,3),
1% =ct and 49 = —¢ . (2.5)

The Poincaré-Cartan-Einstein 1-form on the phase space P is obtained by pulling
back 4,

y=r"5. (2.6)
Particles’ dynamics is determined by Hamilton’s equation
i;dy =0, (2.7

where 7 is a vector field, whose integrals are particle’s worldlines on P.
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Figure 1 Phase space and fiber integral.

Very elegantly, the Poincaré-Cartan-FEinstein 1-form  also gives the necessary
“volume form” needed for the fundamental “velocity integrals” in kinetic theory.
Define the Liouville 6-form w on the 7D phase space P as

1
w = —Wd'y/\dv/\d'y. (2.8)

We take the viewpoint that the “velocity integrals” in kinetic theory are geomet-
rically fiber integrals [26] defined as follow. For x € M, and ¢ € 7~ 1(z) C P(see
Fig.1), consider the form
wz () (u1, uz, uz)[v1,v2,v3] = w(q)(u1, u2, us, U1, U2, U3) , (2.9)
where
U; € Tq[ﬂ'_l(m)], v; €T, M, Tqﬂ(ﬁi) =v;, U; € TqP , (z = 1,2,3).

Actually, ©; is not unique because in general T, 7 is not injective. However, w,(q) is
well defined because according to the submersion theorem,

Ker(Tym) = Tylr ()] - (2.10)

Therefore, w,(q) is a 3-form on w~!(z), valued in 3-forms on M. The 3-form flux on
M corresponding to a distribution function f : P — R is the result of integration
of fw, over the fiber 771(z) at =,

j(z) = /_1( )fwz : (2.11)

The fact that j(x) is the conventional 3-form flux can be verified by expressing w in
a coordinate system composed of inertial coordinates z* (u = 0,1,2,3) for M and
three corresponding coordinate p; with ¢ = 1,2, and 3 for T, M. In this coordinate
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system we have the following expressions in the phase space P,

po = —v/m2c2 + p? (2.12)

dy = ZAi,jdwj Adz' + dp; Adz' — e¢ jdzi Adt —c 0 Vm2e® + p?dp; AN dt

Op;
(2.13)
w =dp1 Adps A dps A (d:vl Adz? Adz® — rrIL)—'lydt A dx? A da?
— P2 gt ndtnde® — 2 det Ada? A dt) , (2.14)
my, my,
where
P2

Y =1/1+ oyl (2.15)

The Maxwell equations are
dxdA = 47T€/ fwz , (2.16)

m=1(z)

where *q is the Hodge-dual of a on spacetime M. Overall, the Vlasov-Maxwell
equations on the 7D phase space P can be geometrically written as

df(v) =0, i,dy=0, and dxdA = 47re/ fws - (2.17)

w=1(z)

3 Noether’s theorem, symmetries, Kruskal ring, and Lie coordinate
Perturbation

Noether’s theorem links symmetries and invariants. Here, we cast the theorem
in the form of forms. Define a symmetry vector field n (infinite small generator) of
v to be a vector field that satisfies

Lyy=ds (3.1

for some s : P — R, where L, is the Lie derivative. 7 generates a 1-parameter
symmetry group for . Using Cartan’s magic formula, we have

d(y-n) +ipdy=ds . (3.2)
For the vector field 7 of a worldline,
diy-n)-T=ds-1, (3.3)

which implies that v -7 — s is an invariant.

In the present study, we will only consider the non-relativistic case in an inertial
coordinate system for M with z° = ct. In addition, we chose three corresponding
coordinate p; (i = 1,2, 3) as the fiber coordinates for P at z with

1 2
po = —vm2c2 +p? = —mc— 5% +0 [(1)4] . (3.4)

me
We normalize v by m, A by mc/e, and ¢ by m/e such that

7:(A+v)-dw—[§+¢]dt, (3.5)
v=p/m. (3.6)
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Here, the bold mathematical symbols A, v, and p represent the ¢ = 1,2,3 compo-
nents of the 1-forms A, v, and p, dx represents dz® (i = 1,2,3), and (A +v) - dz
is just a shorthand notation for )7, , 5(A; + v;)dz’. The normalizations for v, ¢,
and A will be used thereafter, unless it is explicitly stated otherwise.

The symmetry for v that we are interested is an approximate one. It is an
exact symmetry when the electromagnetic fields are constant in spacetime. To
demonstrate the basic concept, we first consider the case of constant magnetic
field without electrical field. Because of its simplicity, there are several symmetries
admitted by 7. The gyro-symmetry is the symmetry given by the infinite small
generator (vector field)

(1o, 2N, (10 2 .
=%\ B oz Ovy Y\Boy ov,) ’
Applying Noether’s theorem, we can verify that the corresponding invariant is the
magnetic moment
vyt

p=—om (3.8

The gyro-symmetry 7 has a rather complicated expression in the Cartesian coordi-
nates (z,y, vy, vy). A new coordinate will be constructed such that 7 is a coordinate
base 5

n= % ) (39)
where 6 is the gyrophase coordinate. Eq. (3.7) indicates that the gyro-symmetry 7
is neither a rotation in the momentum space, nor a rotation in the configuration
space or its prolongated version in the phase space. Therefore, 8 is not a mo-
mentum coordinate or a configuration coordinate. It is a phase space coordinate
that depends on particles’ momentum as well as their spacetime positions. We will
call the orbit of n in phase space Kruskal ring, and points on which Kruskal ring
mates [31], which are illustrated in Fig.2. Shown in Fig.3 is direct laboratory ob-
servation of charged particle gyro-motion in magnetic field [1]. It is the projection
of the Kruskal ring in the configuration space.

Kruskal Ring

Figure 2 The orbit of the gyro-symmetry n = 53—0 is Kruskal ring. Points on
the ring are ring mates [31].

When the fields are not constant in spacetime, the gyro-symmetry 5 in Eq. (3.7)
is broken. We therefore seek an asymptotic symmetry when the spacetime inho-
mogeneity is weak. Finding the most relaxed conditions of spacetime inhomo-
geneity under which an asymptotic gyro-symmetry still exists is our goal as well.
The strategy to achieve our objectives has two steps. (i) Construct a non-fibered,
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NRL Space Chamber Lab 2003May08
Figure 3 Direct laboratory observation of charged particle gyro-motion in
magnetic field. [1]. (Reprint permitted by AIP and Dr. Amatucci.)

non-canonical phase space coordinate system Z = (X, u,w,#) such that v can be
expanded into an asymptotic series
Y=Y%t+tn+r+ -, (3.10)

where 41 ~ €%, J2 ~ €91, and € < 1. Z is the called the zeroth order gyrocenter
coordinate. In addition, 5y admits the gyro-symmetry n = /80, but 4, does not
necessarily; (ii) Introduce a coordinate perturbation transformation such that in
the new coordinates Z = (X, u,w, ), v1 admits the gyro-symmetry n = §/96. In
fact, we will seek a stronger symmetry condition

8v/00 =0,

which is sufficient for n = 0/00 to satisfy Eq.(3.1). Z is the called the first order
gyrocenter coordinate. The small parameter € measures the weakness of spacetime
inhomogeneity of the fields. The coordinate perturbation transformation procedure
indicates that the most relaxed conditions for the existence of an asymptotic gyro-
symmetry is

E=E’+E B=B°+B, (3.11)
ElNUXcBl,Eswsvchl,BSNEBl, (3.12)
(b5 o2 ) ~ (W o o )~ (39
(107 o) ~ (10 g ) ~1. B9

where the fields were split into two parts. (E!, B!) are the large amplitude parts
with long spacetime scale length comparable to the spacetime gyroradius p =
(p,1/9), and (E*, B®) are the small amplitude parts with spacetime scale length
smaller than the spacetime gyroradius.

The coordinate perturbation method we adopt belongs to the class of pertur-
bation techniques generally referred as Lie perturbation method [3, 6,7, 37].
coordinate transformation for the 7D phase space P can be locally represented by
a map between two subsets of the R space, T : z — Z = T'(2). As illustrated in
Fig. 4, for the same point p in phase space, there could be more than one coordinate
systems (patches). The correspondence between two different coordinate systems
for the same point in phase space is the coordinate transformation. In the present
study, we assume a coordinate transformation can be represented by a single map
almost everywhere. The subset of phase space which can not be covered by the
single map has zero measure and does not contribute to the fiber integrals.
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“ Coordinate System 2

Figure 4 Coordinate transformation as a map in R7.

To see how « is transformed by T, let Z = z 4+ G1(z) and G1(2) ~ ¢,
L(Z2) =4(2) =7v[Z - G1(2)) =7 [Z - G1(Z) + O(e?)]
=(Z) = Lay(2)7(Z) + O”)

=92) —ig,(zdV(Z) — d[y-Gi(Z)] + O(e?) . (3.15)
If v is an asymptotic series as in Eq. (3.10),
[(Z) =To(Z) +T1(Z) + O(?) , (3.16)
Lo(Z) =v(2) , (3.17)
I'(Z2) =n(Z) —igy(z)dn(Z) — d]y - Gi(Z)] - (3.18)

Similar procedure can be straightforwardly carried out to second order. Let Z =
2+ G1(2) + Ga(2),

1
I'3(Z) = 12(Z) — Le,(zym1(Z) + (513201(2) - LGz(Z)> Y0(Z) - (3.19)

4 Gyrocenter coordinates

To construct the zeroth order gyrocenter coordinate Z = (X, @,w,8), we first
define two vector fields on M (or more rigorously sections of a vector bundle over
the spacetime M)

E'(y) x B'(y) B'(y)
[B!(y)]” Bl(y) ’

where y € M. In addition, we define the following vector fields which also depend
on v, the velocity at another spacetime position x € M,

D(y) = (4.1)

u(y,v=)b(y) = [v=(y) — D(y)] - b(y) b(y) , (4.2)
w(Y,vz)c(Y, ve) = [v=(y) — D(y)] x b(y) x b(y) , (4.3)
c(y,vz) - e(y,ve) =1, (4.4)
a(y,vz) = b(y) x c(y,v=) (4.5)

p(y,Um) = b(y) X ['Um(y) - D(y)] (46)

Bl(y) ’
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where v (y) is the velocity at « parallel transported to y, and all the fields can
depend on t. In the flat spacetime considered here, v, (y) = v,. The parallel trans-
ported velocity vz (y) has the following partition

ve(y) = D(y) + u(y; v2)b(y) + w(y, ve)c(y, va) - (4.7)

The zeroth order gyrocenter coordinate transformation
go:z=(x,v,t) = Z = (X,u,w,0,t) (4.8)

is defined by

z=X+p(X,v), (4.9)
a=uX,v), (4.10)
w=w(X,v), (4.11)
sinf = —¢(X)-e (X) (4.12)
t=t, (4.13)

where e; (X)) is an arbitrary unit vector field in the perpendicular direction, and it
can depend on ¢ as well. Consequently,

v = D(X) + ab(X) + we(X) . (4.14)

Substituting Eqgs. (4.9)—(4.14) into Eq. (3.5), and expanding terms using the order-
ing Egs. (3.11)-(3.14), we have

T=%+%+ 0, (4.15)
—2
Y0 = [AL(X,t) + ab(X,t) + D(X X Y__dp
Yo [ ( ,t)+ub( at)+ ( 7t)] d +2BI(X,t) 0
a2 + w2 + D(X.4)? B

- [ (X, +¢l(x,t)] dt (4.16)
. |w _ we 1 I w s _
= [EVa-(ub+7)+§p-VB xp—ﬁVD-cH—A(X%—p)] dX

w? . u‘PAS - ~ L six -
+ —Wa-VB -b+§ (X +p)-c|df+ B (X +p)-al|ldo

_ [¢S(X+p)+p- %_1; —Cp-VE'-p-— (ﬂb+ “’70) -%‘Z—‘;] dt . (4.17)
Here, every field is evaluated at Z and can depend on ¢, and exact terms of the
form da for some « : P — R have been discarded because their insignificance in
Hamilton’s equation (2.7). Computation needed in deriving the above equations is
indeed involving. It can be easily verified that 97,/08 = 0, but 87,/08 # 0. As
discussed before, we now introduce a coordinate perturbation to the zeroth order
gyrocenter coordinates Z,

Z=g9(Z2)=2+Gi(2), (4.18)

such that 0v1/06 = 0 in the first order gyrocenter coordinates Z = (X, u,w, ).
Considering the fact that an arbitrary exact term of the form da can be added to
Y1, we have

N(2) =1(2) —ic,(z)dn(Z) + dSi(Z) , (4.19)
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which, with Gy = 0, expands into

1
n(Z) = [Glx x B' — G1ub + VS; + %Va- (ub+ E) +5p- VB xp

2
w s 851 w 851
1 s w 681 w3 1
+§A (X+p)-a] dw + {_EG1W+W_QBI3G'VB b
w S l 831 s
+_1A (X +p)-cldd+ _E'G1X+UG1u+UJG1w+W—¢(X+p)
oD 1 I w Oa

In Eq. (4.20), every field is evaluated at Z and can depend on t. Extensive calcula-
tions are needed to solve for G; and S; from the requirement that 01 /00 = 0. We
listed the results without giving the details of the derivation,

oS w?
GlX = _6—1+ Bl3aa VBl+ W(Va b) X b— W(VD a) X b
A3(X
w?
. wu w
Gy = 2Bl2a VB - +Eb-Va-b—§b-VD-a
—b-[VS 1+ A°(X +p)] , (4.22)
B oS w2 s
Gro=— ael—ﬂlea-VB’-b +c-A(X +p), (4.23)
B! dS 1
Gip = _E(‘?—u} 2% A (X +p) . (4.24)
The determining equation for S; is
681 Ell X b 1 651 1681 w2 1
Bt ( g tub) VS E G, B Gy =L |gpmaa VB
l,
BlZ (Va b) xb— B2 (VD a) X b] 5B YvB .
wu w3 .
—?b-v b+—b VD.a+ 23120, VB -b
w 0D p U aa 4 WY 0b
+ e e + 5 — 2Bl2 VE +gra 5 (4.25)
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The G; and S; in Egs. (4.21)-(4.25) remove the -dependence in 7, i.e.,

7 (Z) =%(2) +1(2Z) , (4.26)
2
— 4l : _v
= [A(X,t) + ub(X,t) + D(X,t)] -dX + 2Bl(X,t)d9
2 2 2
S J;D(X’t) + (X, 1) dt (4.27)
2
vl(Z):—@R dX — Hydt (4.28)
!
H1 EJ_ QBBVB +mb VXb+<¢)
2
- 1p% (V-E'—bb:VE') - mRO, (4.29)
Oc
REVC-CL,ROE—E-CL, (4.30)
s S El b s s
VP =¢*(X +p) — -A*(X 4+ p) —we- A°(X +p) , (4.31)
1 2
<a>:§/o adf , a=a—{a) . (4.32)

Even though Egs. (4.21)-(4.32) are displayed without derivation, it may be
necessary to demonstrate the basic procedures of the derivation. For this purpose,
we will outline here the derivation of the X | and w components of G in vy (2) . Let

1
7ix(Z) = |Gix x B' = G1ab+ VS1 + 2 Va- (ub+ E) +-p-VB'xp
B! 2 2
w S

We look at the following partition of 11 x(Z) - dX,
mx(Z)-dX =b-nx(Z2)b-dX +vix(Z) xbx b-dX . (4.34)
For the first term in the right hand side of Eq. (4.34)
b-vix(Z)=-Giu+b-VS +b- A (X + p) — %b-VD-a
1 . w we
+5(p- VB xp)-b+ 5 Va- (ub+ )b (4.35)

Choosing G, to be the form displayed in Eq. (4.22), we are left with the following
expression
w?

2B!
Similarly, for the second term in the right hand side of Eq. (4.34)

b-mx(Z2)b-dX = ( —_R. b) b-dX. (4.36)

71X(Z)xb:—GlXLBl-i-bxVSl—beS(X—i-p)-}-%beD-a

1 ! w we
+5p(p-VB) + 2 Va- (ub+ 27) xb. (4.37)



A Short Introduction to General Gyrokinetic Theory 181

Choosing G'1x 1 to be the perpendicular component part of the result displayed in
Eq. (4.21), we are left with

_w

2B!
Combining Egs. (4.36) and (4.38), we obtain the first term on the right hand side
of Eq. (4.28). The rest of the derivation for Eqs. (4.21)-(4.32) can be carried out in
similar procedures.

A particle’s worldline is given by a vector field 7 on phase space P which
satisfies

T1x(Z) xbxb-dX = ( RJ_) -dX . (4.38)

irdy=0. (4.39)
The conventional gyrocenter motion equation can be obtained through
dX 7x du_T_u dw Ty dH_T_g

dt  n dt n o dt o dt om
After some calculation, we obtain the following explicit expressions up to order &
for gyrocenter dynamics,

(4.40)

dx Bt M bx Et
o b Bt Vb - (441)
du Bt.-Et
— = 4.42
dt Bt-b’ (4.42)
o dX E'.VB'
=B +R-E—RO+{T+§b-be

+2 Y%y — L [V-E'—bb: VE'] (4.43)

Ou 2B! ' ’ '
du w?
ap _ =W 4.44
at =0 P =g (4.44)
Bt =V x [AY(X,t) + ub(X,t) + D(X,1)] , (4.45)
D? b 8D

t — P _ [ - s a2

E'=E' -V (uB'+ =+ (¥ )] s = o (4.46)

The modified fields Bt and E' can be viewed as those generated by a modified
potential At = (¢f, A1),

A =g+ + 2 ey @)
AN(X 1) = AY(X,t) + ub(X,t) + D(X,1) , (4.48)
Bt =V x Al, Ef = V¢l — 68—‘f . (4.49)

In Eq. (4.44), the conserved magnetic momentum g is constructed asymptotically
when the spacetime inhomogeneities are weak. Recently, the concept of adiabatic
invariant has been extended to cases with strong spatial inhomogeneities for mag-
netic field [20,61].

5 Gyrocenter gauge and gyro-gauge

An important fact is that the requirement 0-y;/06 = 0 does not uniquely de-
termine the coordinate perturbation G and the gauge function S, and therefore the
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first order gyrocenter coordinates. There are freedoms in defining the zeroth order
gyrocenter coordinates as well. For example, in Ref. [38], the following definition
of the zeroth order gyrocenter coordinates are used

z= X+ p(X,v), (5.1)
@ = u(x,v) , (5.2)
w = w(x,v) , (5.3)
sinf = —c(zx) - e1(x) , (5.4)
t=t. (5.5)

This choice results in more terms in the expression for 4;. We will call the freedoms
in selecting the gyrocenter coordinates gyro-center gauges. In Eq.(4.30), R and
Ry are #-independent, even though a and ¢ are f-dependent. Let R = (R, R),
X = (t,X), and V = (=0/0t,V). The v in Eq.(4.26) is invariant under the
following group of transformation

R— R+ V§(X) , (5.6)
9 — 0 +6(X) . (5.7)

Apparently, this is a gauge group associated how the gyrophase # is measured or
how Kruskal ring mates are labeled. Naturally, an appropriate name for this gauge
would be gyro-gauge. The R components of gyro-gauge group were first rigorously
derived in Ref. [39]. Without R, v will not be invariant under the gyro-gauge group
transformation.

6 Pullback transformation

Even though the v in Eq. (4.26) is gyro-gauge invariant, it does not need to be.
Different gyro-center gauges can be chosen such that -« is not gyro-gauge invariant.
The gyrocenter coordinate system constructed is just a useful coordinate system
for physics, but not the physics itself. It can depend on the gauges (freedoms) we
choose, as long as it is useful. Gyrocenter coordinate system and the gyrokinetic
equation are not the total of physics under investigation. What is gauge invariant
is the system of gyrokinetic equation and the gyrokinetic Maxwell equations. The
key element which makes this gyrokinetic system gauge invariant is the pullback
transformation associated with the gyrocenter coordinate system. Without this
vital element, a number of prominent physics features, such as the presence of the
compressional Alfvén wave and a proper description of the gyrokinetic equilibrium,
cannot be readily recovered.

Kinetic theory deals with particle distribution function f, which is a function
defined on the phase space P, f : P — R. As discussed in Sec. 2, the familiar den-
sity and momentum velocity integrals needed for Maxwell’s equations are the fiber
integrals j(z) = fw—l(m) fwe at x, which returns a 3-form flux. A coordinate system

(z,v) for P is fibered if z are the coordinates for the base, i.e., the spacetime M. In
gyrokinetic theory, however, the useful gyrocenter coordinate system is non-fibered
because X are not coordinates for spacetime. The gyrocenter transformation g :
z — Z is a non-fibered coordinate transformation. No matter which coordinate
system is used, non-fibered or fibered, the moment integrals are still defined on
the fiber 7! (z) at each x, and j(z) should be invariant under general non-fibered
coordinate transformations. For the new non-fibered coordinate system Z to be
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useful, it is necessary to know the construction of j(z) in it. To be specific, the
current scenario is that the distribution function f is known in the transformed
non-fibered coordinate system Z as F(Z). Given F(Z), we need to pull back the
distribution function F(Z) into f(z),

i@) = / 6" [F(2)]wa , (6.1)
7~ 1(z)
§"[F(2)] = F (4(2)) = f(2). (6.2)

Considering the asymptotic nature of the construction of the gyrocenter transfor-
mation g,

9=9190, 90:2— 27, g1: Z— 7, (6.3)
we write
f(z)=g"F(Z) = g; gt F(Z —go 91(2)]
= G [F(2) + G- VF(Z) + O(=*)
= Fgo(2)] + G [g90(2)] -VF [go(z)] +0(e?) . (6.4)

7 General gyrokinetic Vlasov-Maxwell equations

After constructing the gyrocenter coordinates and the corresponding pullback
transformation, we are ready to cast the coordinate independent (geometric) Vlasov-
Maxwell equations (2.17) in the gyrocenter coordinates to obtain the general gy-
rokinetic Vlasov-Maxwell equations. The gyrokinetic Vlasov equation is simply the
Vlasov equation df (7) = 0 in the gyrocenter coordinates Z, which is explicitly

dz; OF

—_—— = <5< . .
oz =0 0<i<6) (7.1
Because
0 (dZ
2 () o, o
the gyrokinetic equation can be easily split into two parts
F=(F)+F, (7.3)
O(F)y dX du0(F)
“or +E VX<F>+E £ =0, (7.4)
OF dX ~ dudF dfOF
Bt + — VXF—G—E%-FE%—O, (7.5)

where dX /dt, du/dt, and d0/dt are given by Egs. (4.41)-(4.43). It is necessary to
complete the kinetic equations for F' with Maxwell’s equation. With the pullback
transformation (6.4), the gyrokinetic Maxwell’s equation can be written as

d*dA=47r/ [(F o go) + (G ogo) -V (Fogo)ws - (7.6)
=1 (z)

We emphasize that Eq. (7.6) is not a new equation which contains different physics
than the original Maxwell’s equation with moment integral. The more appropriate
name for this equation should be “Maxwell’s equation with moment integral (fiber
integral) in the gyrocenter coordinates”.
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The gyrophase dependent F can be decoupled from the system. Letting F = 0,
Eqs. (7.4) and (7.6) form a close system for (F) and A. We note that F = 0 does
not imply that f: 0. f becomes gyrophase dependent through the pullback trans-
formation (6.4) and G. Indeed, f and G contain significant amount of important
physics, which will be demonstrated in the next two sections.

The spirit of the general gyrokinetic theory is to decouple the gyro-phase dy-
namics from the rest of particle dynamics by finding the gyro-symmetry, which
is fundamentally different from the conventional gyrokinetic concept of “averaging
out” the “fast gyro-motion”. This objective is accomplished by asymptotically con-
structing a good coordinate system, which is of course a nontrivial task [16,17,40]
(see Fig.5). Indeed, it is almost impossible without the Lie coordinate perturba-
tion method enabled by the geometric nature of the phase space dynamics. We
developed the gyrokinetic Vlasov-Maxwell equations not as a new set of equations,
but rather as the Vlasov-Maxwell equations in the gyrocenter coordinates. Since
the general gyrokinetic system developed is geometrically the same as the Vlasov-
Maxwell equations, all the coordinate independent properties of the Vlasov-Maxwell
equations, such as energy conservation, momentum conservation and Liouville vol-
ume conservation, are automatically carried over to the general gyrokinetic system.

A5 LONG AS T STAY SOUTH OF

THE 4O th PARALLEL AND WEST

OF THE'120% MERIDIAN, I
THINK I'M ALL RIGHT...

T HOPE I'M GOING
THE RIGHT WAY...

THEY SHOULD HAVE THE
MERIPDIANS MARKED ALONG
THE 6ROUND SOME PLACE...

Figure 5 Quest of useful coordinates [40]. (Peanuts by Charles Schulz.
Reprint permitted by UFS, Inc.)

8 Application: Spitzer paradox

Now, we turn to the applications of the gyrokinetic theory developed. The first
application is related to how to describe plasma equilibrium using the gyrokinetic
theory. Spitzer first noticed the obvious differences between the currents described
by the fluid equations and the guiding center motion [53,54]. There are two aspects
of these obvious differences in an equilibrium plasma without flow and electric field.
First, the perpendicular current given by the fluid model is the diamagnetic current
b x Vp/B, which is not in the guiding center drift motion. On the other hand, the
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curvature drift and the gradient drift for the guiding center motion are not found
in the fluid results. This puzzle, first posed and discussed by Spitzer, is what we
call the Spitzer paradox. To resolve it, we must explain, qualitatively as well as
quantitatively, how the diamagnetic current is microscopically generated, and what
happens to the macroscopic counterparts of the curvature drift and the gradient
drift. Here, we will only discuss the first part of the puzzle — how the diamagnetic
current is generated microscopically. A detailed study of the puzzle and other
relevant topics can be found in Ref. [50].

Spitzer gave the well-known physical picture, which is illustrated in Fig.6.
The basic setup is an equilibrium plasma with a constant magnetic field and a
pressure (density) gradient in the perpendicular direction. From the fluid equation
b x B = Vp, we know that the perpendicular current is b x Vp/B. However,
if we look at the microscopic picture, for each gyrocenter, the drift motion does
not produce any gyrocenter current or flow because the magnetic field is constant
in spacetime. Spitzer pointed out that there are more particles on the left than
on the right; thus macroscopically gyromotion generates current and flow at each
spatial location. The key to resolve the paradox is the realization that the flow

Plasma, _ ~
>

Figure 6 Spitzer Paradox. In memory of Lyman Spitzer Jr. (1914-1997) [52].

of particles is fundamentally different from that of gyrocenters. The difference is
rigorously described by the pullback transformation discussed in Sec. 6. Because B
is constant, G; = 0. Using Eqs. (6.1) and (6.4), the dx A dt A dz component of j is

iv= [ vgi [F@)] dv* = [ v,F(a +p,v)ao?
= /vy [F(z) +p- VF(z)+ O(e*)] dv®

OF 1 Vp
— 2 3 _
= | Y, dv’ = (b X )y . (8.1)

The physics captured in Eq.(8.1) is clear. Even though the gyrocenter flow is
zero, particle flow can be generated by the pullback transformation g associated
with the zeroth order gyrocenter transformation go. The Spitzer paradox highlights
the “seeming conflict” between the theory of gyromotion and the fluid equations,
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two most fundamental concepts in plasma physics, and emphasizes the important
physics content in the pullback transformation.

9 Application: Bernstein wave and compressional Alfvén wave

As examples of applications of the gyrokinetic theory developed to plasma
waves, we derive the dispersion relations for the Bernstein wave and the compres-
sional Alfvén wave in this section. A detailed derivation of the complete dispersion
relation for plasma waves with arbitrary wavelength and frequency using the gy-
rokinetic theory can be found in Ref. [46].

For the Bernstein wave, we consider an electrostatic wave propagating perpen-
dicularly in a homogeneous magnetized plasma. Let B! = Be, = Qe,, E' = 0,
A% =0, k = ke,, and

¢° ~ dexp (ikz —iwt) . (9.1)
Linearizing the gyrokinetic equation for F' = Fy + F;, we have
dF1 6F1 61'710
& _ Y .VF=-b- -_— . 2
7 B +ub-V b- V(o) 5u (9.2)
Assuming the equilibrium distribution function Fy to be Maxwellian
2
No —v
Fh=—v—— — 9.3
0 (27T /m)3/2 P (2T/m> ’ (93)
the solution for the linear gyrokinetic equation is degenerate because kj = b-k = 0,
1 —kju
= Pk @) 04)

The only physics content is found in the pull-back of the perturbed density, which
requires expressing the gauge function Si in terms of the perturbed fields. The
equation for S is

p-V

9, 85, - v
0% B _Gx o =[P — P ex) . ©5)
Using the identity
exp(Acosf) = » I,())exp(inf) , (9.6)
we can easily solve Eq. (9.5) for S,
_ 1 1 o In(ipk) ino
Si= gt g > i iy 0.7

where @ = w /). Since F; = 0, the density response (i.e., the dx Adt Adz component
of the 3-form flux in spacetime) comes only from S in the pull-back transformation.

ny = / 9 [FU(2) + G - VEo(Z) + O()] do® 9.8)
= /e_p'le - VEFy(2)dv® + O(e?)

Q9S, OF
— —p-v U1 U0 403 2
_/e = 50 awd'v + 0(e?)

= /—e’"v T}/;i% i %g{zﬁg) o it é(x) d®v + O(?) .
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Using the facts that
27 .
/ eim+mé ge—5. on, (9.9)
0

we have

ny = vidydvy .

2 —ng¢ v+ & I, (—ipk)I.(ipk)
(2nT)3/2 / T/;Jn exp(= ;T/m ) 2 (n— @)
n=—oo
(9.10)
Carrying out the algebra with the help of some identities related to the Bessel

functions, we obtain

¢ =  2n? k*T k*T
= — (=) . A1
ni nOT/m Z (£)2 _n2 eXp( Q2m) n(sz) (9 )
n=1 QO
Finally, the Poisson equation (in unnormalized units)
V¢ =) dmen (9.12)
spec

gives the dispersion relation of the Bernstein wave

Ange? 2n? k2T KT
1= - I, . 1
> T X @, g ) (9.13)
spec n=1 0
For low frequency and long wavelength modes, the leading order n; in Eq. (9.11) is
k.2
ny = —’I’L()Q—;'Z5 .

Historically, this term has been referred as “the polarization drift term in the Pois-
son equation”. It has played an important role in the development of gyrokinetic
particle simulation methods [5,11,13,14,19,21,23,33,34,42,57]. However, its deriva-
tion were almost always heuristic. Using the general gyrokinetic theory developed
here, this term is rigorously recovered as a special case of the general pullback
transformation. In an inhomogeneous equilibrium, it is generalized into [47]

No
n=V. (@w) . (9.14)
Let’s rewrite the Poisson equation for the current case as,
V-(eE))=0, (9.15)
4drnge?
e=1+) Tl (9.16)
spec

Here £ can be viewed as the dielectric constant of the plasma in the perpendicular
direction. This point of view can be justified by the following alternative derivation
of Eq. (9.16). Because

r=X+p+Gix, (9.17)

if we treat gyrocenters X as individual particles, then there is a charge separation
due to the G;x displacement (see Fig.7). The induced electric polarization p
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(dipole moment) for each gyrocenter is [29]

p= % /Glx o (9.18)
Gix = % x VS . (9.19)
Calculation shows
p= é—jvm . (9.20)
Therefore, the electric susceptibility for each species is
X = g‘;i , (9.21)

which is consistent with Eq. (9.16).

Figure 7 The G1x displacement induces an electric polarization p (dipole
moment) for each gyrocenter X.

We observe that the second term in Eq. (9.16), or the dielectric constant due
to the polarizaiton drift, agrees with the well-known classical result. In this case, it
shows that the magnetized plasma described by the gyrokinetic theory physically
has the same linear response as that described by the classical theory. We take the
viewpoint that the general gyrokinetic theory should not contain different physics
that are not described by the Vlasov-Maxwell equations in the regular laboratory
phase space coordinates. However, there are gyrocenter coordinates where the
Vlasov-Maxwell equations have different forms more suitable for theoretical analysis
and numerical simulations. The challenge of the general gyrokinetic theory is to
construct such a useful coordinate system and associated pull-back transformation
without losing or adding any physics content to the Vlasov-Maxwell equations.
Indeed, the dielectric constant in Eq.(9.16) is just a limiting case of the most
general classical dielectric constant tensor for magnetized plasmas [55], which has
been recovered exactly from the general gyrokinetic theory with the most general
pullback transformation [46]. Alternative viewpoint on the dielectric response in
gyrokinetic plasma, which has important implications for numerical methods for
gyrokinetic systems, was discussed by Krommes [30].

To derive the dispersion relation for the compressional Alfvén wave, we consider
an electromagnetic wave propagating perpendicularly with B! = Be, = Qe,, E' =
0, ¢° =0, k = key, and

A® = A, exp (thy — iwt) e, . (9.22)
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As in the case of the Bernstein wave, F; = 0 since k| = 0. Ignoring the finite
gyro-radius effect, the equation for 5 is
05 08 .
Qa—el + 8—751 =wsinfA, . (9.23)

The solution for S; is
w , cos(f) + iwsin(6)

=—A, .24
170 @+1)@-1) (9-24)
The perpendicular components of j are
F
ji= / —%le (vedt Ady A dz + vydx A dt A dz)
=noA idt/\d /\dz—i—i—a)dm/\dt/\dz (9.25)
T nofe | Tor N @+1@-1) ‘ '

The dt A dy A dz component is the polarization drift flow, and the dx A dt A dz is
the F x B flow. When @ < 1, the FE x B flow from different species cancels out in
neutral plasma, and

. engy .
jr=—) Wt Asdt Ady Adz . (9-26)

spec
Invoking the Maxwell’s equation d* dA = 47§, we obtain the dispersion relation for
the compressional Alfvén wave

w? = k%%, (9.27)

where v% = B?/4mng is the Alfvén velocity in unnormalized units.

10 Further development

Physics is geometry. The geometric point of view for the gyrokinetic theory
has been proven to be efficient and productive. The geometry of the gyrokinetic
theory is rich. Many interesting topics, such as gyrocenter dynamics as a Hamil-
tonian system in a cotangent bundle [44], gyrocenter dynamics as an anholonomy
of a connection [44], collision operator for the gyrokinetic system, and gyrokinetic
concept for magnetized plasmas with strong spacetime inhomogeneities [20,61] are
currently being investigated.
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