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Abstract
The following results are presented from the development and application of TEMPEST, a fully nonlinear (full-f)
five-dimensional (3d2v) gyrokinetic continuum edge-plasma code. (1) As a test of the interaction of collisions and
parallel streaming, TEMPEST is compared with published analytic and numerical results for endloss of particles
confined by combined electrostatic and magnetic wells. Good agreement is found over a wide range of collisionality,
confining potential and mirror ratio, and the required velocity space resolution is modest. (2) In a large-aspect-ratio
circular geometry, excellent agreement is found for a neoclassical equilibrium with parallel ion flow in the banana
regime with zero temperature gradient and radial electric field. (3) The four-dimensional (2d2v) version of the code
produces the first self-consistent simulation results of collisionless damping of geodesic acoustic modes and zonal
flow (Rosenbluth–Hinton residual) with Boltzmann electrons using a full-f code. The electric field is also found
to agree with the standard neoclassical expression for steep density and ion temperature gradients in the plateau
regime. In divertor geometry, it is found that the endloss of particles and energy induces parallel flow stronger than
the core neoclassical predictions in the SOL.

PACS numbers: 52.25.Fi, 52.35.Ra, 52.40.Kh, 52.55.Fa, 52.65.Tt

1. Introduction

Understanding the structure of the edge transport barrier
in high-performance (H-mode) discharges requires a kinetic
description of the plasmas because the radial width of the
pedestal observed in experiments is comparable to the radial
width of individual ion drift orbits (leading to a large distortion
of the local distribution function from a Maxwellian), and
because the ion and electron mean-free-paths are long
compared with the connection length for the hot plasma at the
top of the edge pedestal (violating the assumptions underlying
collisional fluid models). A gyrokinetic formulation (2v) [1]
is a reasonable approximation for edge plasmas because
it is believed that pedestal physics is likely dominated by
phenomena having low frequencies compared with the ion
gyrofrequency. But previous gyrokinetic theories and codes
do not apply to edge plasmas because they cannot treat
fully nonlinear (full-f) electromagnetic perturbations with

multi-scale-length structures in space–time for full divertor
geometry.

We report on the development and application of
TEMPEST, a full-f gyrokinetic code, to simulate H-mode edge
plasmas. This five-dimensional (ψ, θ, ζ, E0, µ) continuum
code represents velocity space via a grid in equilibrium
energy (E0) and magnetic moment (µ) variables and
configuration space via a grid in poloidal magnetic flux (ψ),
poloidal angle (θ ) and toroidal angle (ζ ). The geometry can
be a circular annulus or that of a diverted tokamak and so
includes boundary conditions for both closed magnetic flux
surfaces and open field lines. The same set of gyrokinetic
equations [2, 3] is discretized for both geometries. The
equations are solved via a method-of-lines approach and
an implicit backward-differencing scheme using a Newton–
Krylov iteration to advance the system in time [4]. The spatial
derivatives are discretized with finite differences while a high-
order finite-volume method is used in velocity space (E0, µ).
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A fourth-order upwinding algorithm is used for parallel
streaming, and a fifth-order WENO scheme [5] is used for
particle cross-field drifts. Boundary conditions at conducting
material surfaces are implemented on the plasma side of the
sheath. The code includes kinetic or Boltzmann electrons.
A nonlinear Fokker–Planck collision operator (CQL) from
the STELLA code [6] has been extracted and integrated into
TEMPEST using the same implicit Newton–Krylov solver.
A new Fokker–Planck collision operator in (E0, µ) space is
under development for improved accuracy and conservation
properties [7]. The gyrokinetic Poisson (GKP) equation is
solved self-consistently with the gyrokinetic equations as a
differential-algebraic system involving a nonlinear system
solve via a Newton–Krylov iteration using a multigrid
preconditioned conjugate gradient (PCG) solver for the
Poisson equation.

2. Basic gyrokinetic equation

A set of generalized gyrokinetic Vlasov–Maxwell equations
valid for edge-plasma conditions has been derived in the
gyrocentre coordinate system by the Lie transform perturbation
method, which uses the Poincaré–Cartan–Einstein 1-form
and the pullback transformation for the distribution
function [2]. This formalism allows inclusion of nonlinear
large-amplitude, time-dependent background electromagnetic
fields in addition to small-amplitude, short-wavelength
electromagnetic perturbations. As an example, the pullback
transformation in the GKP equation is explicitly expressed in
terms of moments of the gyrocentre distribution function, thus
describing the important gyro-orbit squeezing effect due to
the large electric field gradients in the edge and the full finite
Larmor radius effect for short-wavelength fluctuations. The
familiar polarization-drift density in the gyrocentre Poisson
equation is replaced by a more general expression.

2.1. Full-f electrostatic ion gyrokinetic equations

The electrostatic ion gyrokinetic equations presently imple-
mented in TEMPEST for the time-dependent five-dimensional
(5D) distribution functions are simplified from our recent new
formulation [2] and Hahm’s earlier work [3]. In order to
accurately simulate particle parallel streaming, the large elec-
trostatic potential �, which has multiple spatial-time scales, is
split into two parts � = �0 + δφ: �0 is the large-amplitude,
slowly varying component; δφ is the small-amplitude, rapidly
varying component. Here E0 is defined as the total energy
including �0, but not δφ. Then E0 is a constant of motion
if δφ ∼ 0 and ∂〈�0〉/∂t ∼ 0 for a coordinate aligned with
the direction of phase-space flow. The kinetic equation for the
gyrocentre distribution function Fα(x̄, µ̄, Ē0, t) in gyrocentre
coordinates (x̄ = x − ρα , ρα = b×v/Ωcα), ‘equilibrium en-
ergy’ Ē0 and magnetic moment µ̄ has the form

∂Fα

∂t
+ v̄d · ∂Fα

∂ x̄⊥
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+
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, (5)

〈δφ〉 = 〈�〉 − 〈�0〉. (6)

Here q = Zαe, Mα are the electric charge and the mass
of electrons (α = e) and ions (α = i). The left-hand
side of equation (1) describes particle motion in electric and
magnetic fields. Cα is the Coulomb collision operator. The
overbar is used for the gyrocentre variables and 〈 〉 denotes
the gyroangle averaging. Additional E0 ×B flow terms due to
the large amplitude and slow variation of �0 from the complete
formulation [2] will be added.

2.2. Full-f GKP equation

The complete GKP equation has been recently derived in (a) of
[2], including orbit squeezing by large Er shearing and full
FLR effect. To make it numerically tractable, two additional
approximations are made here: (1) the spatial variation of the
transverse µ̄ moments Mn(x̄) calculated from Fα(x̄, µ̄, Ē0, t)

is assumed much slower than that of the potential in evaluating
the full FLR effect; (2) the total transverse distribution function
is Maxwellian with temperature T⊥α .

2.2.1. Full-f GKP equation in the arbitrary wavelength
regime. In the arbitrary wavelength regime, the self-
consistent electrostatic potential is computed from the GKP
equation:

0 = − 4πe
[ ∑

α

ZαNα(x, t) − ne(x, t)
]

−
∑

α

1

λ2
Dα

[
0(b) − 1]�, (7)

where 
0(b) = I0(b)e−b, b = ρ2
α∇2

⊥/2 and I0(b) is
the usual zeroth-order modified Bessel function. The ion
gyroradius is ρα = √

2T⊥α/Mα/
α , the ion gyrofrequency
is 
α = ZαeB/Mαc and the ion Debye length is λ2

Dα =
T⊥α/4πNαZ2

αe2. Although equation (7) is similar to the
usual GKP equation [3], there is an important distinction.
Our GKP equation is full-f and the gyrocentre density Nα

and perpendicular ion pressure p⊥α are calculated from the
gyrocentre distribution function Fα(x̄, µ̄, Ē0, t).

Nα(x, t) ≡ 2π

Mα

∫
B∗

‖ dv̄‖ dµ̄Fα,

ne(x, t) ≡ 2π

me

∫
B∗

‖ dv‖ dµfe,

(8)

p⊥α = πB

∫
dv‖ dµ̄(v2

⊥Fα), T⊥α = p⊥α

Nα(x, t)
. (9)
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Here the dot product between the density gradient vector and
potential gradient vector, as well as the Debye shielding, have
been dropped for simplicity in equation (7).

The first-order Padé approximation to 
0, 
0 − 1 =
b/(1 + b), is an excellent fit for 0 � b � 9 and is
therefore valid well into the typical ion gyrokinetic regime
as shown previously in gyrokinetic and gyrofluid simulations
[8, 9]. Substituting a simple functional transformation � =
φL + [T⊥α/(NαZ2

αe)][ZαNα(x, t) − ne(x, t)] and the Padé
approximation into equation (7) yields

ρ2
α

2
∇2

⊥φL = − Tα

NαZ2
αe

[ZαNα(x, t) − ne(x, t)]. (10)

where φL is calculated by the GKP solver.

2.2.2. Full-f GKP equation in the long wavelength regime.
In the long wavelength limit k⊥ρα 
 1, the self-consistent
electric field is typically computed from the GKP equation for
multiple species:

∑
α

ρ2
α

2λ2
Dα

∇⊥ · (ln Nα∇⊥�) + ∇2� = −4πe
[ ∑

α

ZαNα(x, t)

−ne(x, t)
]

−
∑

α

ρ2
α

2λ2
Dα

1

NαZαe
∇2

⊥p⊥α. (11)

In the long wavelength regime, the approximation ∇Nα 

∇� is not used. There are two important distinctions
between equation (11) and the usual GKP equation [3].
Our GKP equation is full-f with the gyrocentre density
Nα and perpendicular ion pressure p⊥α calculated from the
gyrocentre distribution function Fα(x̄, µ̄, Ē0, t) defined in
equations (8) and (9). The last term of equation (11) is the
diamagnetic density from the long wavelength expansion of
the gyroaveraged gyrocentre density Nα(x, t), i.e. from the
pullback transform. Although the diamagnetic density is small
compared with the ion gyrocentre density, it is of the same order
as both the polarization density in high-beta plasmas and the
difference between ion and electron gyrocentre densities. This
equation is an extension of the typical neoclassical electric field
model including poloidal variation [10].

2.3. Boundary conditions

2.3.1. Radial boundary conditions. Radial Robin boundary
conditions are used for Fα and potential � at the inner core
surface ψ = ψc and the outer wall surface ψ = ψw.
Robin boundary conditions consist of specification of a linear
combination of a field value and its normal derivative at all
points of the boundary surface ψ = ψc,w, such as αb�

b +
βb∂�b/∂ψ , where αb, βb, �

b and ∂�b/∂ψ are prescribed.
This is a generalization of Dirichlet (αb = 1 and βb = 0) and
Neumann (αb = 0 and βb = 1) boundary conditions. Since
the gyrokinetic equation has only a first-order radial advection
term, only one boundary condition is used and then only where
the convection is into the domain. No boundary condition
should be imposed for particles convecting out of the domain;
therefore an extrapolation is used at that boundary.

2.3.2. Poloidal boundary conditions. The boundary
conditions in the θ direction for Fα and for � are sheath
boundary conditions at the divertor plates, and a twist-shifted
(in 5D) parallel periodic condition in the “core” for field-line-
aligned coordinates [11–13]. Our present implementation for
sheath boundary conditions consists of absorption of all ions
incident at the wall in the absence of biasing, and absorption
of electrons energetic enough to escape the sheath potential
and reach the wall, i.e. E0 = eδφsh − µB > 0. Here
�sh = �0sh +δφsh is the sheath potential. Optionally, a fraction
of escaping ions and electrons can be reflected.

2.3.2.1. Sheath boundary conditions for potential. If the
gyrokinetic ion and fluid electron model are used, the sheath
potential is determined by the ambipolarity condition:

�sh = Te,sh

e
ln

[
4
i,sh

ne,shζ
√

8Te,sh/πme

]
,


i,sh = 2πB

M2
i

∫ ∞

q�0sh

dE0

∫ (E0−q�0sh)/B

0

dµ

|v‖|v‖Fσ
i .

(12)

The σ = ± represents the plus and minus sheets of parallel
velocity with Fσ

i �= 0 for only the incoming particle sheet.
Here it is assumed that impinging electrons have a Maxwellian
distribution. The factor ζ ≡ 1/(1+τp/τe) includes a correction
for electron long mean-free path physics. τp is long mean-free
path confinement time and τc is the confinement time for the
collisional sheath-limited case. ζ ≡ 1 if the electrons are in
the short mean-free path regime. The ne,sh and Te,sh are the
electron density and temperature on the plasma side of the
sheath.

If both electrons and ions are kinetic, the sheath potential
is determined by the quasi-neutrality condition at the sheath
entrance:


i,sh = 2πB

M2
i

∫ ∞

q�0sh

dE0

∫ (E0−q�0sh)/B

0

dµ

|v‖|v‖Fσ
i , (13)


e,sh = 2πB

m2
e

∫ ∞

eδφsh

dE0

∫ (E0−eδφsh)/B

0

dµ

|v‖|v‖Fσ
e ,


i,sh 
 
e,sh, (14)

where there is an energetic group of impinging electrons that
overcome the potential barrier and reach the wall with the
energy E0 > µB − eδφsh.

2.3.2.2. Sheath boundary conditions for distribution functions.
If the gyrokinetic ion and fluid electron model is used, the ion
distribution function is:

Fα(ψ, θ, E0, µ) =
{

Fα(ψ, θ, E0, µ), v‖ � 0,

0, v‖ � 0.
(15)

A convention regarding the sign of the parallel velocity is that
it is positive when it points in the direction of increasing θ .
Here θ increases towards the outer divertor plate.

If both electrons and ions are kinetic, the electron
distribution function is

fe(ψ, θ, E0, µ, σ = −1)

=
{

fe(ψ, θ, E0, µ, σ = 1), |v‖| � vsh,

0, |v‖| � vsh.
(16)
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Figure 1. (a) Time evolution of the distribution function for
circulating particles using a fourth-order upwinding scheme. The
equilibrium electrostatic potential �0 = 0.0, ε = a/R0 = 0.3, the
minor radius a = 0.51 m, Zα = 1, poloidal magnetic field
Bp = 0.3 T. (b) The density versus toroidal angle at different times
for toroidal convection using a fifth order Weno scheme. The ion
transit time τb is defined as τb = R/vTi, vTi = √

2Ti/Mi.

Here vsh = √
2e�sh/me is the electron threshold velocity

determined by the sheath potential �sh.

3. TEMPEST simulation schemes

The TEMPEST gyrokinetic equations and GKP equation
are self-consistently integrated as a differential-algebraic
system involving a nonlinear system solve via Newton–Krylov
iteration. The spatial derivatives are discretized with finite
differences while a high-order finite-volume method is used in
velocity space (E0, µ). A fourth-order upwinding algorithm
is used for parallel streaming, and a fifth-order WENO
scheme [5] is used for particle cross-field drifts. The GKP
equation, the drift velocities and acceleration are discretized
using centred differencing. Boundary conditions at conducting
material surfaces are implemented on the plasma side of the
sheath. The GKP preconditioner block is inverted using a
multigrid PCG solver. The PCG solver and preconditioners
are provided by the Hypre library using the “semi-structured
interface” [14]. The code includes kinetic or Boltzmann
electrons. The Boltzmann relation in the adiabatic option
employs flux surface averaging to maintain neutrality within
field lines and is solved self-consistently with the GKP
equation. A decomposition procedure circumvents the near
singularity of the GKP Jacobian block that otherwise degrades
CG convergence.

(a)

(b)

(c)

eφφ /Te

Figure 2. Collisional endloss (‘Pastukhov’) test cases:
(a) confinement time versus density; (b) confinement time versus
potential eφ/Te at low collisionality; (c) confinement versus mirror
ratio at low collisionality.

TEMPEST uses a Python scripting front end that allows
the gyrokinetic code to interface with other codes, such as
the edge transport code UEDGE and other physics packages,
implemented as Python modules. We have designed and
implemented flexible C++ data structures for the management
of distributed arrays and supporting data objects on top of the
structured adaptive mesh refinement application infrastructure
(SAMRAI) [15] and Chombo [16]. The data layout is
defined on distributed and disjoint unions of rectangular
blocks, but with arbitrary interblock connectivity (nonlocal
communication) for multiple regions in the edge plasma across
the magnetic separatrix.

The gyrokinetic equation is primarily particle convection
both in configuration and velocity spaces. An accurate, stable
and weakly damped convection scheme is extremely important
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Figure 3. (a) Comparison between simulation results with theory (red solid line) for a collisionless case with ∇Ti = 0 and zero finite
banana-orbit width. Flux surface averaged parallel heat flux 〈q‖i〉. The red solid line is from theory q‖α = 2.5NαU‖αTα and the other lines
are from simulation results at different times after 10 thermal ion transit times; (b) comparison of simulation results with theory for flux
surface averaged parallel flow velocity 〈U‖i〉 in the banana regime with ν∗i 
 0.02, ∇Ti = 0 and finite banana-orbit width in X-point divertor
geometry. The average is done by integration along the field line from the inner plate to the outer plate in the SOL. (c) The contours of
parallel heat flux q‖(R, Z) in the divertor geometry.

for the success of continuum gyrokinetic simulations. Here we
present tests of our convection scheme for parallel streaming
and toroidal drift. The fourth-order upwind scheme for parallel
streaming is given in the appendix. The complete description
and tests of the code algorithms will be given in a future
publication.

3.1. Parallel streaming

The streaming test is done in a circular geometry with magnetic
field B(θ) = B0/(1 + ε cos θ), ε = a/R0 = 0.3, the minor
radius a = 0.51 m and poloidal magnetic field Bp = 0.3 T.
The range of the variables: 0 � θ � 2π , 0 � v‖ � 3vth.
The initial distribution function is F0 = (B0/B)FM, where
FM is a Maxwellian distribution. For a given energy E0

and magnetic moment µ in velocity space, F0 has a peaked
profile in the θ -coordinate due to B(θ). As the time evolves,
the pulse will propagate along the magnetic field due to the
parallel streaming. In the absence of the toroidal direction
for 4D TEMPEST, the field line is closed and the pulse
should periodically propagate along the poloidal angle θ . The
oscillations at a specified poloidal position θ for a given
energy E0 and µ in velocity space represent the convection
along the particle trajectory for the closed magnetic field line.
For an ideal numerical difference scheme for convection, the
amplitude should exhibit regular oscillations in time around a
constant mean. The time evolution of the distribution function
is plotted in figure 1(a), which shows an almost ideal oscillation
for the expected periods of a circulating particle far away
from the trapping–untrapping boundary using the fourth-order
upwinding scheme given in the appendix. For a second-
order upwinding scheme, a slight downward drift is observed;
while for the third-order upwinding scheme, a small amount
of damping is observed. However, even with the fourth-order
upwinding scheme, the damping is strong for barely circulating
particles and barely trapped particles due to nonuniform (orbit

time τ ) grid spacing (not shown), dτ = ∫ li+1

li
dl/v‖ and dl is

the arc length of a magnetic field line.

3.2. Toroidal convection

A similar test has been done for a toroidal drift using a fifth-
order Weno scheme. Figure 1(b) shows the density versus
toroidal angle for different times. An initial pulse is prescribed,
centred at the middle of the toroidal simulation domain. As
the time evolves, the pulse propagates due to the toroidal
drift and should come back to its initial position with the
same shape due to toroidal periodicity. A good numerical
scheme should preserve this property. As we can see from
figure 1(b), our scheme preserves the property very well after
the 14 cycles. There is no significant damping or deformation
from the original pulse. The primary reason for using the
fifth-order Weno scheme is the existence of radial regions for
particles with given energy E0 and magnetic moment µ that
are inaccessible under the influence of radial magnetic drifts.

4. TEMPEST simulation results

To facilitate verification and validation, both full-f and
delta-f options are available for either circular or divertor
geometry. TEMPEST is runnable as (1) 3D for parallel (to B)
physics studies F(θ, E0, µ), (2) 4D for axisymmetric transport
F(ψ, θ, E0, µ) and (3) 5D for turbulence F(ψ, θ, ζ, E0, µ).
The different aspects of 3D, 4D and 5D TEMPEST have been
verified on various known physics problems: (1) collisional
scattering into a velocity-space loss cone, (2) neoclassical
flow and transport, (3) electric field generation and geodesic
acoustic mode (GAM) damping and (4) self-consistent radial
electric field for steep density and ion temperature gradients
(ITGs). In addition, the initial runs have been done in 5D
for drift waves and ITG modes (to be described elsewhere).
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For the preliminary physics problems studied in this paper, the
gyrokinetic Poisson equation (11) has been used without the
diamagnetic density term and �0 has been set to be zero for
simplicity, except in section 4.1. In the future we will test the
separation of the electrostatic potential into �0 and δφ.

4.1. 3D Pastukhov collisional endloss

As a test of collisional velocity space transport and parallel
streaming, 3D TEMPEST (1d2v) simulation results are
compared with published analytical and numerical results as
shown in figure 2 for the endloss of particles confined by
combined electrostatic and magnetic wells [17–19]. Here the
electrostatic and magnetic fields are uniform in the simulation
volume, with abrupt increases at the walls (incorporated into
the boundary conditions). Good agreement is found over a
wide range of collisionality, confining potential and mirror
ratio; the required velocity space resolution is modest. In these
simulations, the linearized CQL collision package is used.

4.2. 4D neoclassical flows

For a shifted Maxwellian distribution that analytically satisfies
equation (1) for the zero finite banana-orbit size as an initial
condition, TEMPEST should preserve the solution without
any significant change (within our finite-difference truncation
accuracy) after running some time steps. We tested such a
case using the following simulation parameters: inverse aspect
ratio ε = a/R0 = 0.03, the major radius R0 = 17.1 m,
toroidal magnetic field Bt = 1.5 T and poloidal magnetic
field Bp = 0.2 T. The ion density profile is ni(ψ) =
Nix exp(− ln(Nix/Nio)ψ/Lψ) with Nix = 1 × 1020 m−3 and
Nio = 0.95Nix . The ion temperature profile is flat with
Ti = 3 keV. The mesh resolutions are nψ = 30, nθ = 50,
nE = 60 and nµ = 30. In the simulations � is set to zero
for simplicity. As shown in figure 3(a), the simulation results
remain in good agreement with theoretical prediction even after
10 000 time steps (∼50 thermal ion transit times). The solid
line in the plot of q‖i comes from a theoretical prediction
for a shifted Maxwellian distribution, q‖α = 2.5NαU‖αTα

and U‖α = −(I/
α)(Tα/Mα)(∂ ln Nα/∂ψ). The simulation
curves cannot be differentiated, indicating that the system has
reached a steady state solution.

In divertor geometry with given particle and heat sources
on the inner core boundary surface and the ion density and
temperature profiles ni(ψ) = Nix exp(− ln(Nix/Nio)ψ/Lψ),
and Ti(ψ) = Tix exp(− ln(Tix/Tio)ψ/Lψ) with Tix = 3 keV,
Tio = 0.95Tix , Nix = 1 × 1020 m−3, and Nio = 0.95Nix ,
it is found that the dominance of rapid parallel endloss of
particles and energy in the SOL induces a parallel flow that
is stronger than core neoclassical predictions in the SOL as
indicated in figure 3(b); a symmetry point is developed for
the parallel heat flux on the top of the machine as expected as
shown in figure 3(c). For the temperature Te = Ti = 3 keV and
deuterium ion, the sound speed is 3.79×105 m s−1. Therefore
the maximum March number for the flux surface averaged
velocity is less than 0.025. Here the three different times are
all at the initial transient on the order of ion transit time and
the flow does not reach at a steady state yet. The final steady
state depends on the models of sources and sinks. The further
comparison of the code results with other divertor codes is in
progress and will be reported in a separate paper [20].
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Figure 4. (a) Time evolution of the zonal-GAM potential shows
GAM oscillation, collisionless damping and residual for a
large-aspect-ratio circular geometry with q = 2.2 and ε = 0.02 with
three different velocity space resolutions; (b) comparison of
simulation results for |φ|2 (krρs = 0.0721, θ = 0, t) with theory for
the GAM damping rate at three different velocity resolutions in
finite drift orbit regime; (c) GAM damping rate versus q with finite
drift orbit effect (red) and without finite drift orbit effect (black)
from Sugama and Watanabe theory [23].

4.3. 4D GAMs

The GAM is a poloidal asymmetric mode, which involves
parallel ion dynamics, cross-field drifts and acceleration.
Earlier GAM theory and simulations focused on the large-
aspect-ratio, small orbit [21, 22] regime. Recently Sugama
and Watanabe found that the damping rate is sensitive to
k⊥ρi at large q = εBt/Bp due to the effect of large
drift orbits [23]. In our 4D GAM simulations, the charge
is radially separated by an initial sinusoidal perturbation
of the ion density. The electron model is Boltzmann
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TEMPEST simulation X=Lψ/4
X=Lψ/2
X=3Lψ/4

Φ(x,θ,t)(V)
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Figure 5. (a) Er from TEMPEST simulations (black) versus neoclassical theory (red) with finite banana-orbit effect in circular geometry
with q = 3 and ε = 0.1; (b) time evolution of the flux-surface-averaged electrostatic potential at different radial locations; (c) the
radial–poloidal profile of the electrostatic potential calculated from a TEMPEST simulation at the end of the simulation.

ne = 〈ni(ψ, θ, t = 0)〉 exp(eφ/Te)/〈exp(eφ/Te)〉, where 〈 〉
represents the flux surface average. This choice of coefficient
for the Boltzmann electron model means that there is no cross-
field electron transport. Both radial and poloidal boundary
conditions are periodic. The first full-f, self-consistent
simulation results of collisionless damping of GAMs and zonal
flow are plotted in figure 4. Comparison between theory
[23, 24] and simulations for the frequency of the GAM is
shown in figure 4(a) and damping rate in figure 4(b). The
25% difference between theory and simulation may be due to
the theory using an asymptotic 1/q2 expansion for large q,
while q = 2.2 in the simulation is not very large. The large
effect of the orbit size on the GAM damping rate is illustrated
in figure 4(c). For the same parameters, the damping rate
is almost zero if the finite drift orbit effect is ignored. The
complete descriptions for TEMPEST simulations of GAM
collisionless damping and its relevance to the experiments in
edge-plasma pedestal will be presented elsewhere [25].

4.4. 4D neoclassical radial electric field with finite orbits

The simulations presented here are carried out for large-
aspect-ratio circular geometry with magnetic field Bt = 7.5 T,
R0 = 45.6 m, q = 3 and ε = 0.1. The ion density and
temperature profiles are initialized as a hyperbolic tangent
(tanh) function of radius centred around the middle of
simulation domain (such as, N(ψ) = n0 + nm tanh((ψ −
ψm)/�n), where ψm = (ψ0 + ψL)/2 and �n =
δn ln(N(ψ0)/N(ψL))). The boundary ion distribution is a
fixed Maxwellian with N(ψ0) = 1 × 1020 m−3, nL =
N(ψL) = 5 × 1019 m−3, Ti(ψ0) = 3 keV, and Ti(ψL) =
1.5 keV during a simulation. The δn is a parameter to
control the radial scale length. In this simulation δn =
50.5. The radial boundary condition for the potential is
∂φ(ψ0)/∂ψ = φ(ψL) = 0. The electron model is
the Boltzmann model specified in section 4.3. A Krook
collision model is used with νii = 0.15vTi/R0, vT i =√

2Ti(ψ0)/Mi. The neoclassical radial electric field from

TEMPEST simulations agrees very well with the standard
neoclassical expression 〈Ui‖〉 = (cTi/ZieBp)[k(∂ ln Ti/∂r) −
(∂ ln Pi/∂r)−(Zie/Ti)(∂〈�〉/∂r)] with k = −0.5 as shown in
figure 5(a) in the plateau regime [27]. The radial electric field is
generated due to the neoclassical polarization. A time history
of the flux surface averaged electric potential in figure 5(b)
shows geodesic acoustic oscillations generated by the initial
conditions, which then relax to a near steady state, consistent
with the previous studies [10, 26]. Due to ion–ion collisions,
the Rosenbluth–Hinton residual as discussed in the previous
section is damped, and the neoclassical residual is reached.
Figure 5(c) shows the radial–poloidal profile of the electrostatic
potential calculated from the TEMPEST simulation at the end
of the simulation, indicating a uniform poloidal profile.

5. Summary and conclusions

The recently developed full-f, 5D continuum edge-plasma
code TEMPEST utilizes high-order spatial differencing
and a high-order finite-volume scheme for velocity space
to accurately simulate particle convection and Coulomb
collisions. TEMPEST runs in both full divertor geometry for
maximum applicability to diverted tokamaks and in circular
geometry for benchmarking with analytic theories and existing
core gyrokinetic codes. TEMPEST demonstrates expected
physics results in 3D and 4D verification tests. The initial
runs have been done in 5D. The further improvement and
development of the TEMPEST code (and its successor codes)
will yield a valuable predictive model for the edge pedestal.
This work is focused on a fundamental understanding of
relevant physics from first-principles theory and simulations
and should greatly increase our confidence in predictions of
ITER edge-plasma performance.
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Appendix. Fourth-order upwind scheme for
nonuniform grid spacing

We write the finite-difference approximation to the first
derivative at node i for a discretization of N points as

(∂τf )i ≈
N∑

j=1

aj (i)fj . (17)

The function value at i is written as fi = f (τi), where τi

is defined in section 3.1. For a fourth-order upwind-biased
stencil at node i, the support of {τi−3, τi−2, τi−1, τi, τi+1} leads
to the following weights:

ai+1(i) = (τi − τi−1)(τi − τi−2)(τi − τi−3)

(τi+1 − τi)(τi+1 − τi−1)(τi+1 − τi−2)(τi+1 − τi−3)
,

(18)

ai(i) = 1

(τi − τi−1)
+

1

(τi − τi−2)
+

1

(τi − τi−3)
− 1

(τi+1 − τi)
,

(19)

ai−1(i) = − (τi+1 − τi)(τi − τi−2)(τi − τi−3)

(τi+1−τi−1)(τi−τi−1)(τi−1−τi−2)(τi−1−τi−3)
,

(20)

ai−2(i) = (τi+1 − τi)(τi − τi−1)(τi − τi−3)

(τi+1 − τi−2)(τi − τi−2)(τi−1 − τi−2)(τi−2 − τi−3)

(21)

ai−3(i)=− (τi+1 − τi)(τi − τi−1)(τi − τi−2)

(τi+1 − τi−3)(τi − τi−3)(τi−1 − τi−3)(τi−2 − τi−3)

(22)

with aj (i) ≡ 0 otherwise. The formal leading-order truncation
error is

− (τi+1 − τi)(τi − τi−1)(τi − τi−2)(τi − τi−3)

120
(∂5

τ f )i . (23)
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