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Wall-impedance-driven collective instability in intense charged particle beams
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The linearized Vlasov-Maxwell equations are used to investigate detailed properties of the wall-
impedance-driven instability for a long charge bunch (bunch length ‘b � bunch radius rb) propagating
through a cylindrical pipe with radius rw and wall impedance ~ZZ�!�. The stability analysis is carried out
for perturbations about a cylindrical Kapchinskij-Vladimirskij beam equilibrium with a flattop density
profile in the smooth-focusing approximation. The perturbations are assumed to be of the form
� �x; t� � � ‘�r� exp�i‘�� ikzz� i!t�, where �r; �� are the radial and azimuthal coordinates in the
transverse direction, and z is the coordinate in the longitudinal direction. Here, ‘ � 1; 2; . . . is the
azimuthal mode number of the perturbation in the transverse direction, kz is the wave number in
the longitudinal direction, and ! is the oscillation frequency. As an example, detailed stability
properties are determined for dipole-mode perturbations �‘ � 1� assuming negligibly small axial
momentum spread of the beam particles. The stability analysis is valid for a general value of
the normalized beam intensity sb � !̂!2

pb=2�
2
b!

2
�? in the interval 0< sb < 1, where !̂!pb �

�4�n̂nbe2b=�bmb�
1=2 is the relativistic plasma frequency and !�? is the applied focusing frequency.
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variety of diverse applications ranging from the Harris-
like instability driven by large temperature anisotropy

focusing frequency, and x? � xêex � yêey is the transverse
displacement of a beam particle from the cylinder axis.
I. INTRODUCTION

High energy ion accelerators, transport systems, and
storage rings [1–8] have a wide range of applications
ranging from basic research in high energy and nuclear
physics, to applications such as spallation neutron
sources, heavy ion fusion, and nuclear waste transmuta-
tion. Charged particle beams are subject to various col-
lective instabilities that can deteriorate the beam quality.
Of particular importance at the high beam currents and
charge densities of practical interest are the effects of the
intense self-fields produced by the beam space charge and
current on determining detailed equilibrium, stability,
and transport properties. In general, a complete descrip-
tion of collective processes in intense charged particle
beams is provided by the nonlinear Vlasov-Maxwell
equations [1] for the self-consistent evolution of the
beam distribution function, fb�x;p; t�, and the electric
and magnetic fields, E�x; t� and B�x; t�. While consider-
able progress has been made in analytical and numerical
simulation studies of intense beam propagation [9–40],
the effects of finite geometry and intense self-fields often
make it difficult to obtain detailed predictions of beam
equilibrium, stability, and transport properties based on
the Vlasov-Maxwell equations. Nonetheless, often with
the aid of numerical simulations, there has been con-
siderable recent analytical progress in applying the
Vlasov-Maxwell equations to investigate the detailed
equilibrium and stability properties of intense charged
particle beams. These investigations include a wide
1098-4402=03=6(10)=104402(12)$20.00
with T?b � Tkb [37], to the dipole-mode two-stream
instability for an intense ion beam propagating through
background electrons [38], to the resistive hose instability
[39] and the sausage and hollowing instabilities [40] for
intense beam propagation through background plasma, to
the development of a nonlinear stability theorem [22,23]
in the smooth-focusing approximation. Building on these
advances [1,37– 40], in the present analysis we reexamine
the classical wall-impedance-driven instability [41–46],
also called the resistive-wall instability, making use of
the linearized Vlasov-Maxwell equations [1] for pertur-
bations about a Kapchinskij-Vladimirskij (KV) beam
equilibrium f0b�x;p� [9–11] with flattop density profile.
Compared with previous work [41–46], the present analy-
sis based on the Vlasov-Maxwell equations constitutes a
much more general approach. In particular, it enables us
to solve for the dispersion relations and mode structures
for arbitrary azimuthal mode number ‘ in the transverse
direction.

To briefly summarize, the present analysis assumes a
very long charge bunch (bunch length ‘b � bunch radius
rb) with directed axial kinetic energy ��b � 1�mbc2 prop-
agating in the z direction through a cylindrical pipe with
constant radius rw and (complex) wall impedance ~ZZ�!�
[2]. The analysis is carried out in the smooth-focusing
approximation, where the applied transverse focus-
ing force is modeled by Ffoc � ��bmb!2

�?x?. Here,
�b � �1� �2

b�
�1=2 is the relativistic mass factor, Vb �

�bc is the directed axial velocity of the charge bunch,mb
is the particle rest mass, !�? � const is the applied
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Denoting the number density of beam particles by n̂nb and
the particle charge by eb, it is convenient to introduce
the relativistic plasma frequency !̂!pb defined by !̂!pb �
�4�n̂nbe2b=�bmb�

1=2 and the normalized (dimensionless)
beam intensity sb defined by sb � !̂!2

pb=2�
2
b!

2
�? [1].

An important feature of the present analysis of the
linearized Vlasov-Maxwell equations is that it is carried
out for an arbitrary value of the normalized beam inten-
sity in the interval 0< sb < 1, assuming perturbations
about a KV beam equilibrium with flattop density profile
n0b�x� �

R
d3pf0b�x;p�. Illustrative parameters for intense

beam systems are shown in Table I for the Tevatron [47],
for coasting beam experiments in the Proton Storage Ring
(PSR) [48,49], and for the space-charge-dominated
beams envisioned for heavy ion fusion [8]. Note from
Table I that the normalized beam intensity sb ranges
from the very small value sb � 1:36	 10�4 in the
Tevatron, where the particles are highly relativistic,
to the intermediate value sb � 0:08 in the low-energy,
moderate-intensity PSR experiment, to sb ’ 0:98 in the
low-emittance, space-charge-dominated beams for heavy
ion fusion. In any case, the present kinetic analysis of the
wall-impedance-driven instability is carried out for ar-
bitrary value of normalized beam intensity sb in the
interval 0< sb < 1, and (in principle) can be applied to
the diverse range of high-intensity beam systems in
Table I. Finally, the present analysis considers the case
where the axial momentum spread is negligibly small,
and the corresponding Landau damping [1] by parallel
kinetic effects is absent. (This gives a larger estimate of
the instability growth rate than would be obtained with
finite axial momentum spread.) Furthermore, the func-
tional form of the wall impedance ~ZZ�!� is not specified,
although the case of small impedance �j ~ZZj � 1� is con-
sidered when analyzing the kinetic dispersion relation in
Secs. III and IV.
TABLE I. Illustrative paramete

Tev

Ion
Mass number (A)
Kinetic energy ��b � 1�mbc

2 (GeV) 1
Relativistic �b 1
Wall radius rw (cm)
Beam radius rb (cm) 0
Bunch length lb (cm)
lb=rb 8
Focusing frequency !�? (s�1) 6:17
Beam density n̂nb (cm�3) 2:4	
Plasma frequency !̂!pb (s�1) 1:6
Emittance "N (mm mrad) 2
Normalized intensity sb 1:36
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Finally, it is important to emphasize the new features
of the present kinetic analysis of the wall-impedance-
driven instability. First, the stability analysis in Secs. II
and III is carried out for perturbations with general
azimuthal mode number ‘. In particular, the perturba-
tions are assumed to be of the form � �x; t� �
� ‘�r� exp�i‘�� ikzz� i!t�, where �r; �� are the radial
and azimuthal coordinates in the transverse direction,
and z is the coordinate in the longitudinal direction.
Here, ‘ � 1; 2; . . . is the azimuthal mode number of the
perturbation in the transverse direction, kz is the wave
number in the longitudinal direction, and ! is the oscil-
lation frequency. The resulting dispersion relation (58),
derived for perturbations about a cylindrical KV beam
with flattop density profile, can therefore be applied to
dipole-mode perturbations (‘ � 1), as well as to higher-
order multipole perturbations (‘  2). In Sec. IV, detailed
stability properties are calculated from Eq. (62) for
dipole-mode perturbations (‘ � 1), and it is the
authors’ intention to examine stability properties deter-
mined from Eq. (58) for higher-order multipole pertur-
bations in a future investigation. Of particular
importance will be the determination of the size of the
instability growth rates for ‘  2 relative to the ‘ � 1
mode. A further important point regarding the present
stability analysis is that the dispersion relations (58) and
(62) are valid for arbitrary beam intensity in the interval
0< sb < 1, which is an important extension of the
classical calculations in Refs. [41,42], carried out for
low beam intensity (sb � 1). Furthermore, in order to
examine the region of strongest instability, the present
analysis assumes negligibly small axial momentum
spread of the beam particles. In particular, the stability
analysis assumes perturbations about a cold beam distri-
bution function in the axial direction with G�pz� �
��pz � �bmb�bc�, which corresponds to the case of the
rs for intense beam systems.

Heavy ion
atron fusion driver PSR

p Cs� p
1 133 1
50 2.5 0.8
60 1.02 1.85

2.5 9 5
.44 4.24 2.63
37 1000 6000
4.7 236 2281
	 106 1:9	 107 4:0	 107

1010 5:6	 1010 9:4	 108

	 107 2:7	 107 3:0	 107

0� 7:7� 45�
	 10�4 0.98 0.08
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largest instability growth rate. It is well known that an
axial momentum spread results in Landau damping [1] by
the beam particles, including a reduction in the growth
rate of the classical wall-impedance-driven instability
[42]. In this regard, the kinetic analysis of the wall-
impedance-driven instability based on the Vlasov-
Maxwell equations in Secs. II, III, and IVcan be extended
in a straightforward manner to include the effects of
Landau damping [1] by the beam particles, which will
be examined for arbitrary-order multipole modes (‘  1)
in a future investigation. Finally, the present analysis of
the wall-impedance-driven instability assumes axial per-
turbation wavelength long compared to the beam diame-
ter [see Eqs. (12) and (24)]. It is important to recognize
that this approximation neglects some of the coupled-
mode physics discussed by Wang and Smith [11] and
Wang [50], but it is expected to be a good approximation
for describing the wall-impedance-driven instability pro-
vided the wall impedance is sufficiently small at short
axial wavelengths.

It is also important to recognize that the ‘‘first-
principle’’ Vlasov-Maxwell description used in the
present analysis represents a powerful and often tractable
formalism for describing collective processes in charged
particle beams [1]. Its advantages lie in its general appli-
cability and systematic solution method. Such a kinetic
formalism provides a natural framework for analyzing
stability properties for perturbations with arbitrary azi-
muthal mode number ‘, stability properties for perturba-
tions about a broad class of distribution functions (in
addition to the KV distribution), resonant wave-particle
interaction processes, Landau damping effects, etc. To
simplify the present analysis, we have adopted the
often-used KV distribution as the equilibrium distribu-
tion. However, there are unphysical instabilities due to the
singular nature of the KVdistribution, which has a highly
inverted population in phase space [Eq. (2)]. For example,
for ‘ � 0 perturbations, it is well known [11] that the KV
distribution supports a class of unphysical modes that
are unstable at sufficiently high space-charge intensity.
Therefore, it is important to recognize whether a particu-
lar mode obtained for a KVdistribution is a real, physical
mode, or an unphysical mode associated with the inverted
population in phase space. For the ‘  1 modes examined
in the present analysis, the dispersion relation (58) does
not depend on the singular, inverted nature of the KV
distribution. Indeed, there ‘‘surface’’ modes are real and
physical and occur for a wide range of choices of beam
distribution function [1,25,51].

To summarize, the present kinetic stability analysis has
been carried out for perturbations with arbitrary azimu-
thal mode number ‘ � 1; 2; 3; . . . , which leads to the
dispersion relation (58). For the special case of dipole-
mode perturbations (‘ � 1), the dispersion relation (58)
reduces to Eq. (62), which is analyzed in detail in Sec. IV.
A very important feature of the present analysis is that in
104402-3
the limit sb � 1, Eq. (62) reduces to the classical result
obtained in Refs. [41,42] for a low-intensity beam (sb �
1), thereby indicating that the dipole-mode stability be-
havior is insensitive to transverse kinetic effects. Of
course, since Eq. (62) is valid for arbitrary beam intensity
in the interval 0< sb < 1, the dipole-mode stability be-
havior determined from Eq. (62) at moderate values of sb
deviates from that obtained in Refs. [41,42] for sb � 1.
For higher-order multipole perturbations (‘  2), how-
ever, the detailed stability properties calculated from
Eq. (62) are expected to exhibit a dependence on kinetic
effects, which will be the subject of a future investigation.

The organization of this paper is the following. The
theoretical model and assumptions are summarized in
Sec. I. In Secs. II and III, the detailed kinetic stability
analysis is carried out for perturbations about a KV beam
equilibrium with flattop density profile, leading to the
kinetic dispersion relation (58), valid for arbitrary multi-
pole perturbations with azimuthal mode number ‘  1
about an axisymmetric beam equilibrium. Finally, in
Sec. IV detailed properties of the wall-impedance-driven
instability are calculated for dipole-mode perturbations
�‘ � 1� and general values of the normalized beam in-
tensity sb in the interval 0< sb < 1.

II. THEORETICAL MODEL AND ASSUMPTIONS

The present analysis considers a very long charge
bunch with characteristic axial length ‘b and radius rb
satisfying ‘b � rb. The charge bunch is made up of
particles with charge eb and rest mass mb propagating
in the z direction with directed axial kinetic energy
��b � 1�mbc

2, where �b � �1� �2
b�

1=2 is the relativistic
mass factor, Vb � �bc is the average axial velocity, and c
is the speed of light in vacuo. The charge bunch prop-
agates through a cylindrical, conducting pipe with wall
radius rw, and the applied transverse focusing force on a
beam particle is modeled in the smooth-focusing ap-
proximation by

F foc � ��bmb!2
�?x?; (1)

where !�? � const is the applied focusing frequency,
and x? � xêex � yêey is the transverse displacement of a
beam particle from the cylinder axis at r � 0.
Furthermore, the particle motion in the beam frame is
treated in the paraxial approximation with p2

x, p2
y, �pz �

�bmb�bc�2 � �2
bm

2
b�

2
bc

2.
To describe stability properties of the charge bunch,

we make use of a kinetic description based on the
Vlasov-Maxwell equations, which describe the self-
consistent nonlinear evolution of the distribution function
fb�x;p; t� and the self-generated electric and magnetic
fields, Es�x; t� and Bs�x; t�, in the six-dimensional phase
space �x;p�. For simplicity, the present analysis con-
siders small-amplitude perturbations about the axisym-
metric �@=@� � 0�, axially uniform �@=@z � 0�, and
104402-3
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quasi-steady-state �@=@t � 0� equilibrium distribution
functions [38]

f0b�r;p?� �
n̂nb

2��bmb
��H? � T̂T?b���pz � �bmb�bc�:

(2)

In Eq. (2), n̂nb and T̂T?b are positive constants, and H? is
the transverse Hamiltonian defined by

H? �
1

2�bmb
p2
? �

1

2
�bmb!2

�?r
2

� eb�(0�r� � �bA0
z�r��; (3)

where r � �x2 � y2�1=2 is the radial distance from the
cylinder axis, and p? � �p2

x � p2
y�

1=2 is the transverse
momentum. In Eq. (3), the equilibrium self-field poten-
tials, (0�r� and A0

z�r�, are determined self-consistently in
terms of f0b�r;p� from the steady-state Maxwell equa-
tions. Because of the delta-function dependence on pz,
note that the choice of distribution function in Eq. (2) is
cold in the axial direction. An attractive feature of the
choice of f0b�r;p� in Eq. (2) is that the corresponding
equilibrium number density, n0b�r� �

R
d3pf0b�r;p�, has

the flattop profile [38]

n0b�r� �
�
n̂nb � const; 0 � r < rb;
0; rb < r � rw:

(4)

Here, n̂nb � const is the number density of beam particles,
and the edge radius rb is determined self-consistently
from

2T̂T?b

�bmb

�

�
!2
�? �

1

2�2
b

!̂!2
pb

�
r2b � )2br

2
b; (5)

where !̂!2
pb � 4�n̂nbe

2
b=�bmb is the relativistic plasma fre-
104402-4
quency squared. Here, we have introduced the quantity )2b
defined by

)2b � !2
�? �

1

2�2
b

!̂!2
pb � !2

�?�1� sb�; (6)

where

sb �
!̂!2
pb

2�2
b!

2
�?

(7)

is a convenient dimensionless measure of the normalized
beam intensity. Note from Eq. (6) that )b � !�?�1�
sb�1=2 corresponds to the (depressed) betatron frequency
for transverse particle oscillations in the equilibrium field
configuration. For parameters typical of the Tevatron [47],
sb � 1 and )b ’ !�?, corresponding to very weak equi-
librium self-fields. For parameters typical of heavy ion
fusion applications [8], however, sb is in the range 0:9<
sb < 1, corresponding to very large tune depressions. On
the other hand, for accelerators used in nuclear physics
applications [48,49], such as the PSR facility and the
Spallation Neutron Source, the intensity parameter sb is
in the intermediate range, 0:05< sb < 0:2.

An important goal of the present analysis is to develop
a theoretical model that determines the effects of finite
wall impedance and is valid over the entire range of
normalized beam intensity, 0< sb < 1. To this end, we
express fb�x;p; t� � f0b�r;p� � �fb�x;p; t�, and make use
of the linearized Vlasov-Maxwell equations [1,38] to
determine the self-consistent evolution of �fb�x;p; t�,
�Es�x; t�, and �Bs�x; t� for small-amplitude perturba-
tions. For perturbations about the equilibrium distribu-
tion function f0b�r;p� in Eq. (2), the linearized Vlasov
equation for �fb�x;p; t� can be expressed as
�

@
@t

� v �
@
@x

� �bmb)
2
bx? �

@
@p

�
�fb � �

1

�bmb
�F? � p?

@f0b
@H?

� �Fz
@
@pz

f0b; (8)

s s
where �F? � eb��E � v	 �B =c�? and �Fz �
eb��Es � v	 �Bs=c�z are the perturbed transverse and
longitudinal forces. We further express �Es � �r�(�
c�1@�A=@t and �Bs � r	 �A, and make use of the
Lorentz gauge condition, r � �A � �c�1@�(=@t, to re-
late �A and �(. The linearized Maxwell equations for
�(�x; t� and �A�x; t� can then be expressed as

�
r2

? �
@2

@z2
�

1

c2
@2

@t2

�
�( � �4�eb

Z
d3p�fb; (9)

�
r2

? �
@2

@z2
�

1

c2
@2

@t2

�
�A � �

4�eb
c

Z
d3pv�fb: (10)

Here, v � p=�mb is the particle velocity, � �
�1� p2=m2

bc
2�1=2 is the kinematic mass factor, and r2

? �
�1=r��@=@r��r@=@r� � r�2@2=@�2 is the perpendicular
Laplacian in cylindrical polar coordinates �r; �; z�. Note
that Eqs. (9) and (10) determine the perturbed
self-field potentials, �(�x; t� and �A�x; t�, in terms
of the perturbed charge and current densities,
�+b�x; t� � eb

R
d3p�fb�x;p; t� and �Jb�x; t� �

eb
R
d3pv�fb�x;p; t�, where �fb�x;p; t� is determined

self-consistently from Eq. (8).
In Sec. III, Eqs. (8)–(10) will be analyzed for pertur-

bations of the form

� �x; t� � � ‘�r� exp�i‘�� ikzz� i!t�; (11)

where ‘ � 1; 2; . . . is the azimuthal mode number of
the perturbation, kz is the axial wave number, and ! is
the oscillation frequency. For perturbations with real !
and Im kz < 0, the perturbation is growing spatially as a
function of z. On the other hand, for perturbations with
real kz and Im! > 0, the perturbation is growing tem-
porally as a function of t. For present purposes, we
104402-4
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consider perturbations with sufficiently low frequency
and long axial wavelength that

j!jrb
c

� 1 and jkzjrb � 1: (12)

Equations (8)–(10) can be simplified within the context of
the inequalities in Eq. (12). For example, making use of
the Lorentz gauge condition, r? � �A? � �@=@z��Az �
�c�1@�(=@t, it can be shown that j�A?j � rbjkz�Azj or
rbj�!=c��(j over the transverse dimensions of the beam.
Without presenting algebraic details [1], it therefore fol-
lows within the context of Eq. (12) that the �A? contri-
butions in Eqs. (8)–(10) can be neglected and that the
perturbed transverse force �F? can be approximated by
104402-5
�F? � �ebr?

�
�(�

1

c
vz�Az

�
: (13)

Similarly, for the low-frequency, long-wavelength per-
turbations consistent with Eq. (12), it can be shown that
the perturbed longitudinal force term (proportional to
�Fz) in Eq. (8) can be neglected [38]. Moreover, because
the axial momentum spread is negligibly small for
the distribution function in Eq. (2), we approximateR
d3pvz�fb � �bc

R
d3p�fb in Eq. (10).

In summary, making use of the approximations out-
lined in the previous paragraph, the linearized Vlasov-
Maxwell equations (8)–(10) can be approximated by
�

@
@t

� v �
@
@x

� �bmb)
2
bx? �

@
@p

�
�fb �

eb
�bmb

p? � r?

�
�(�

1

c
vz�Az

�
@f0b
@H?

; (14)
where �( and �Az are determined from�
r2

? �
@2

@z2
�

1

c2
@2

@t2

�
�( � �4�eb�nb; (15)

�
r2

? �
@2

@z2
�

1

c2
@2

@t2

�
�Az � �4�eb�b�nb: (16)

Here, Vb � �bc is the average axial velocity, and
�nb�x; t� is the perturbed number density of beam par-
ticles defined in terms of �fb�x;p; t� by

�nb �
Z
d3p�fb: (17)

Equations (14)–(17) represent the final form of the line-
arized Vlasov-Maxwell equations used in the stability
analysis in Sec. III, carried out for perturbations about
the choice of equilibrium distribution function f0b�r;p� in
Eq. (2) with the flattop density profile in Eq. (4).

Equations (14)–(16) are to be solved in the beam in-
terior �0 � r < rb� and in the vacuum region �rb < r �
rw� outside the beam, enforcing the appropriate boundary
conditions at the conducting wall located at radius r �
rw. For present purposes, we assume that the wall imped-
ance is described by a complex scalar function, ~ZZ�!� �
~ZZr � i~ZZi, where ! is the oscillation frequency in Eq. (11),
and that the boundary condition on the perturbed tangen-
tial electric Et and magnetic Ht fields at r � r�w �
�rw�1� /��/!0� can be expressed as [52]

��Et�r�w � ~ZZ�!�n̂n	 ��Bt�r�w : (18)

Here, n̂n � �êer is a unit vector pointing outward from the
cylindrical conducting wall surface. In what follows we
assume that the metal wall is almost perfectly conduct-
ing, implying that j ~ZZ�!�j � 1. Assuming that perturbed
quantities vary according to Eq. (11), and making use of
�r 	 �B�r � c�1@�Er=@t in the vacuum region, the
boundary conditions in Eq. (18) can be expressed as

��E‘z�r�w � �~ZZ��B‘��r�w ;

��E‘��r�w � ~ZZ��B‘z�r�w � ~ZZ
�
kzr
‘
�B‘� �

!r
‘c
�E‘r

�
r�w

:
(19)

Neglecting contributions involving �A? (which can
be done under the assumption that j ~ZZj � 1), we approxi-
mate �B‘� � ��@=@r��A‘z , �E‘r � ��@=@r��(, �E‘� �
��i‘=r��(‘, and �E‘z � �ikz�(‘ � �i!=c��A‘z in
Eq. (19). The boundary conditions in Eq. (19) then reduce
to
kz��(‘�r�w �
!
c
��A‘z�r�w � i~ZZ

�
@
@r
�A‘z

�
r�w

;
‘
rw

��(‘�r�w � �i~ZZ
�
!
c

�
@
@r
�(‘

�
r�w

�kz

�
@
@r
�A‘z

�
r�w

�
: (20)
Equation (20) expresses the boundary conditions at the
conducting wall in terms of the impedance ~ZZ�!� and the
perturbed potentials, �( and �Az. In the limit of zero
impedance, ~ZZ! 0, note that Eq. (20) reduces to
��(‘�r�w � 0 � ��A‘z�r�w , corresponding to the boundary
conditions expected for a perfectly conducting, cylindri-
cal wall. Depending on the frequency regime, there are
several models of wall impedance ~ZZ�!� that can be used
in the boundary conditions in Eq. (20). These range from
impedance functions that depend on the wall structure
and smoothness [2,43,44] to impedance functions that
depend on the electrical conductivity of the wall [52]. For
example, a common expression for ~ZZ�!� for a smooth-
bore, cylindrical conducting wall is given by [52]

~ZZ�!� �
�
!

8�1

�
1=2

�1� i�; (21)

where 1 is the electrical conductivity of the wall.
104402-5
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In concluding this section, we reiterate that the in-
equalities j!jrb=c� 1 and jkzjrb=c� 1 in Eq. (12)
have been used to simplify the perturbed force �F in
the beam interior �0 � r < rb� in the linearized Vlasov
equation (14). Insofar as the wall radius rw is not too far
removed from the beam radius rb �rw=rb � 2–3, say),
then jkzjrw=c� 1 and j!jrb=c� 1 are also good ap-
proximations in solving the Maxwell equations (15) and
(16) in the vacuum region �rb < r � rw�, and the terms
proportional to @2=@z2 � c�2@2=@t2 can be neglected in
Eqs. (15) and (16). This is typically encountered in heavy
ion fusion applications [8], and in some accelerators for
nuclear physics applications such as the PSR facility
[36,48]. In the general case, however, making use of
Eq. (11), the solutions to Eqs. (15) and (16) for �(‘�r�
and �A‘z�r� in the vacuum region are linear combinations
of I‘�3r� and K‘�3r�, where 3�kz; !� is defined by

32�kz; !� � k2z �
!2

c2
; (22)

and I‘�x� and K‘�x� are modified Bessel functions of the
first and second kinds, respectively, of order ‘. For our
purposes here, the analysis in Sec. III makes the further
assumption that

j32�kz; !�jr2w �

							k2z �!2

c2

							r2w � 1: (23)

Whenever Eq. (23) is satisfied, Eqs. (15) and (16) can be
approximated by r2

?�( � 0 � r2
?�Az in the vacuum
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region �rb < r � rw� where �nb � 0, and the solutions
to Eqs. (15) and (16) for �(‘�r� and �A‘z�r� are linear
combinations of r‘ and r�‘, where ‘  1 is an integer. For
example, if we estimate the oscillation frequency by ! ’
kzVb, then Eq. (23) reduces to

jkzj
2r2w
�2
b

� 1; (24)

where ��2
b � 1� V2

b=c
2. Therefore, for a long, highly

relativistic charge bunch (‘b � rb, �b � 1), the inequal-
ity in Eq. (24) is relatively straightforward to satisfy, even
when rw � rb, provided the relativistic mass factor �b is
sufficiently large.

III. KINETIC STABILITY ANALYSIS

A. Linearized Vlasov-Maxwell equations

We now make use of Eqs. (14)–(17) and the assump-
tions summarized in Sec. II to derive a dispersion rela-
tion that describes detailed stability properties of the
charge bunch. In the present analysis, the equilibrium
distribution function in Eq. (2) can be expressed as
f0b�r;p� � Fb�H?���pz � �bmb�bc�, where Fb�H?� �
�n̂nb=2��bmb���H? � T̂T?b�. Because f0b has zero axial
momentum spread about pz � �bmb�bc, we express the
perturbed distribution function in the linearized Vlasov
equation (14) as �fb�x;p; t� � �Fb�x;p?; t���pz �
�bmb�bc�. Integrating Eq. (14) over pz then gives for
the evolution of �Fb�x;p?; t�,
�

@
@t

� Vb
@
@z

� v? �
@
@x?

� �bmb)2bx? �
@
@p?

�
�Fb �

eb
�bmb

@Fb
@H?

p? � r?��(� �b�Az�; (25)
where Vb � �bc � const is the axial velocity of the beam
particles. Moreover, consistent with Eqs. (12) and (23),
we neglect the terms proportional to @2=@z2 � c�2@2=@t2

in Eqs. (15) and (16), and the linearized Maxwell equa-
tions for �(�x; t� and �Az�x; t� are approximated by

r2
?�( � �4�eb

Z
d2p�Fb; (26)

and

r2
?�Az � �4�eb�b

Z
d2p�Fb: (27)

Here, �nb�x; t� �
R
d2p�Fb�x;p?; t� is the perturbed

number density of beam particles, and
R
d2p � � � �R

1
�1 dpx

R
1
�1 dpy � � � .

In the subsequent analysis of Eqs. (25)–(27), it is
convenient to introduce the new independent variables 5
and Z (replacing t and z) defined by

5 � t� z=Vb;

Z � z: (28)
In this case, the perturbation in Eq. (11) can be expressed
as

� �x; Z; 5� � � ‘�r� exp�i‘�� i!5� i��=Vb�Z�;

(29)

where ‘ � 1; 2; . . . , is the azimuthal mode number, ! is
the oscillation frequency, and

�

Vb
�

�!� kzVb�
Vb

(30)

is the effective axial wave number of the perturbation in
the new variables �Z; 5�. The significance of the new
‘‘time’’ variable 5 in Eq. (28) is evident. We consider
the case where the head of the charge bunch passes
through z � 0 at t � 0 with velocity Vb > 0. Then Vb5 �
Vbt� z is the distance backwards from the head of the
beam (at Vbt) to axial position z � Z. If the charge bunch
experiences a perturbation for 5 > 0 with real oscillation
frequency !, it is evident from Eqs. (29) and (30) that
�=Vb represents the spatial oscillation and growth (or
damping) of the perturbation as a function of axial
position Z. Furthermore, in terms of the new variables
104402-6
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Z and 5, the derivatives @=@t and @=@z transform accord-
ing to

@
@5

�
@
@t
;

@
@z

�
@
@Z

�
1

Vb

@
@5
: (31)

Making use of Eq. (31), the linearized Vlasov
equation (25) for �Fb�x?;p?; Z; 5� simplifies to become�

Vb
@
@Z

�v? �
@
@x?

��bmb)
2
bx? �

@
@p?

�
�Fb

�
eb

�bmb

@Fb
@H?

p? �r?��(��b�Az�; (32)

where �(�x?; Z; 5� and �Az�x?; Z; 5� are determined
self-consistently in terms of �Fb from Eqs. (26) and
(27). Note in Eq. (32) that the perturbed beam dynamics
is determined in terms of the wake function � � �(�
�b�Az.

The left-hand side of Eq. (32) will be recognized as the
total derivative, �Vbd=dZ0��Fb�x0

?;p
0
?; Z

0; 50�, following
the particle trajectories x0

? and p0
? in the equilibrium

field configuration. Here, the characteristics of the differ-
ential operator on the left-hand side of Eq. (32) are the
particle orbit equations

Vb
d
dZ0

x0
?�Z

0� � v0?�Z
0� �

1

�bmb
p0
?�Z

0�;

Vb
d
dZ0

p0
?�Z

0� � ��bmb)2bx
0
?�Z

0�;
(33)

which can be combined to give

V2
b
d2

dZ02 x
0
? � )2bx

0
? � 0: (34)

In order to solve Eq. (32), the solutions of physical inter-
est to the transverse orbit Eqs. (33) and (34) are those that
pass through the phase space point �x?;p?� at Z0 � Z,
i.e.,

x 0
?�Z

0 � Z� � x?; p0
?�Z

0 � Z� � p?: (35)

Solving Eqs. (33) and (34) subject to Eq. (35), we readily
obtain

x0
?�Z

0� � x? cos��)b=Vb��Z0 � Z��

�
p?

�bmb)b
sin��)b=Vb��Z

0 � Z��;

p0
?�Z

0� � p? cos��)b=Vb��Z
0 � Z��

� �bmb)bx? cos��)b=Vb��Z
0 � Z��;

(36)

where p0
? � �bmbv0? � �bmbVbdx0

?=dZ
0. As expected,

for the flattop density profile in Eq. (4), the transverse
orbits in Eq. (36) are oscillatory functions of Z0 � Z
with wavelength 6b � 2�Vb=)b, where )b � �!2

�? �
!̂!2
pb=2�

2
b�

1=2 is the (depressed) betatron frequency defined
in Eq. (6).
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The linearized Vlasov equation (32) is now formally
integrated using the method of characteristics [1,37– 40].
Expressing the left-hand side of Eq. (32) as
Vb�d=dZ0��Fb�x0

?;p
0
?; Z

0; 50�, we assume spatially ampli-
fying perturbations �Im� > 0� and integrate Eq. (32)
from Z0 � �1 (where �Fb is assumed to be negligibly
small) to Z0 � Z. This gives

�Fb�x?;p?;Z;5� �eb
@

@H?

Fb�H?�
Z Z

�1

dZ0

Vb
v0? �

@
@x0

?

	 ��(�x0
?;Z

0; 5���b�Az�x0
?;Z

0; 5��:

(37)

Here, use has been made of the fact that H0
? � H? �

const is a single-particle constant of the motion
�dH0

?=dZ
0 � 0� in the equilibrium field configuration. In

the integration over Z0 on the right-hand side of Eq. (37),
x0
?�Z

0� and p0
?�Z

0� � �bmbv0?�Z
0� are the single-particle

orbits in Eq. (6) that pass through the phase space point
�x?;p?� at Z0 � Z.

For the choice of equilibrium distribution Fb�H?� in
Eq. (2), we calculate the perturbed number density
�nb�x?; Z; 5� �

R
d2p�Fb�x?;p?; Z; 5� from Eq. (37)

and substitute into Maxwell’s equations (26) and (27),
which gives closed equations for the perturbed potentials,
�(�x?; Z; 5�and�Az(x\bot,Z,5)\hbox{\curr.} Assuming
perturbations of the form in Eq. (24) for Im� > 0 and
azimuthal mode number ‘ � 1; 2; . . . , and carrying out
the integration over Z0 in Eq. (37), it is found that a class
of solutions exists with density perturbation amplitude
�n‘b�r� �

R
d2p�F‘b�r;p?� localized at the surface of the

charge bunch �r � rb�. Without presenting algebraic de-
tails [1,38], we obtain

4�eb
Z
d3p�F‘b�r;p?�

��
2‘
rb
8‘b�����(‘�r���b�A

‘
z�r����r�rb�: (38)

Here, the response function 8‘b��� is defined by

8‘b��� � �
!̂!2
pb

2‘2‘)2b

X‘
m�0

‘!
m!�‘�m�!

�‘� 2m�)b
�� �‘� 2m�)b

;

(39)

where � � !� kzVb is the Doppler shifted frequency,
!̂!pb � �4�n̂nbe2b=�bmb�

1=2 is the relativistic plasma fre-
quency, and )b � �!2

�? � !̂!2
pb=2�

2
b�

1=2 is the depressed
betatron frequency. As expected, the response function in
Eq. (39) has a rich harmonic content at harmonics of )b.
We define

� ‘�r� � �(‘�r� � �b�A‘z�r�; (40)

and denote � ̂ ‘ � � ‘�rb�, �(̂(
‘ � �(‘�rb�, and �ÂA‘z �

�A‘z�rb�. Substituting Eqs. (29), (38), and (40) into
Eqs. (26) and (27), Maxwell’s equations become
104402-7
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�
1

r
@
@r
r
@
@r

�
‘2

r2

�
�(‘�r� �

2‘
rb
8‘b���� ̂ ‘��r� rb�; (41)

and�
1

r
@
@r
r
@
@r

�
‘2

r2

�
�A‘z�r� �

2‘
rb
�b8‘b���� ̂ ‘��r� rb�;

(42)

for azimuthal mode numbers ‘ � 1; 2; . . . .
Equations (41) and (42), derived for perturbations

about the equilibrium distribution f0b�r;p� in Eq. (2)
with flattop density profile in Eq. (4), constitute the final
forms of the eigenvalue equations used in the present
stability analysis. Here, Eqs. (41) and (42) are to be solved
over the interval 0 � r � rw for the eigenfunctions
�(‘�r� and �A‘z�r� and eigenvalue �, subject to the
condition that �(‘�r� and �A‘z�r� be regular at the origin
�r � 0�, and satisfy the boundary conditions in Eq. (20) at
the conducting wall �r � rw�. It should be emphasized
that Eqs. (41) and (42) are valid over the entire range of
normalized beam intensity, 0< sb � !̂!2

pb=2�
2
b!

2
�? < 1,

subject to the assumption of low-frequency, long-wave-
length perturbations in Eqs. (12) and (23).

B. Derivation of dispersion relation

We now solve Eqs. (41) and (42) in the beam interior
�0 � r < rb� and in the vacuum region outside the charge
bunch �rb < r � rw�. The solutions to Eqs. (41) and (42)
that are regular at r � 0 can be expressed as

�(‘�r� �
�
�(̂(‘�r=rb�

‘; 0 � r < rb;
A0�r=rb�‘ � B0�rb=r�‘; rb < r � rw;

(43)

and

�A‘z�r� �
�
�ÂA‘z�r=rb�

‘; 0 � r < rb;
A�r=rb�‘ � B0�rb=r�‘; rb < r � rw;

(44)

where �(̂(‘ � �(‘�r � rb� and �ÂA‘z � �A‘z�r � rb�, and
A0, B0, A, and B are constants. We enforce continuity of
�(‘�r� and �A‘z�r� at r � rb, which gives

A0 � B0 � �(̂(‘; A� B � �ÂA‘z: (45)

Note from Eqs. (41) and (42) that there are surface charge
and current perturbations at r � rb [the terms propor-
tional to ��r� rb�]. The remaining boundary conditions
at r � rb are therefore obtained by operating on Eqs. (43)
and (44) with

Rrb�1�/�
rb�1�/�

drr � � � , and taking the limit /!
0�. This readily gives

A0 � B0 � �(̂(‘ � 28‘b���� ̂ ‘;

A� B� �ÂA‘z � 2�b8
‘
b���� ̂ ‘; (46)

where � ̂ ‘ � �(̂(‘ � �b�ÂA
‘
z , and ‘ � 1; 2; 3; . . . .

Equation (46) effectively determines the discontinuity
in perturbed radial electric field (azimuthal magnetic
104402-8
field) in terms of the perturbed surface charge density
(current density), which is proportional to8‘b���. Solving
for the coefficients A0, B0, A, and B in terms of �(̂(‘ and
�ÂA‘z , we obtain from Eqs. (45) and (46)

A0 � �(̂(‘ � 8‘b��(̂(
‘ � �b�ÂA

‘
z�;

B0 � �8‘b��(̂(
‘ � �b�ÂA

‘
z�;

B � ��b8
‘
b��(̂(

‘ � �b�A
‘
z� � �bB

0;

A � �ÂA‘z � �b8‘b��(̂(
‘ � �b�ÂA

‘
z�; (47)

where 8‘b��� is defined in Eq. (39), and use has been made
of � ̂ ‘ � �(̂(‘ � �b�ÂA

‘
z .

We now enforce the boundary conditions at the con-
ducting wall �r � rw� given in Eq. (20). Making use of
the solutions for �(‘�r� and �A‘z�r� in the vacuum region
�rb < r � rw� given in Eqs. (43) and (44), the boundary
conditions in Eq. (20) can be expressed as

kz

�
A0 � B0

�
rb
rw

�
2‘
�
�
!
c

�
A� B

�
rb
rw

�
2‘
�

�
i‘
rw

~ZZ�!�
�
A� B

�
rb
rw

�
2‘
�
; (48)

and

‘
rw

�
A0 � B0

�
rb
rw

�
2‘
�
�� ikz ~ZZ�!�

�
A� B

�
rb
rw

�
2‘
�

�
i!
c

~ZZ�!�
�
A0 � B0

�
rb
rw

�
2‘
�
; (49)

where ~ZZ�!� is the wall impedance. Equations (47)–(49)
can be combined to give two linear, homogeneous equa-
tions relating the perturbation amplitudes �(̂(‘ and �ÂA‘z .
The dispersion relation for the complex frequency � is
then obtained by setting the determinant of the 2	 2
coefficient matrix equal to zero. In the limit of a perfect
conductor with ~ZZ! 0, note that Eqs. (48) and (49) give
A0 ! �B0�rb=rw�2‘ and A! �B�rb=rw�2‘, which corre-
spond to the boundary conditions for a perfect conductor,
�(‘�r � rw� � 0 � �A‘z�r � rw�, as expected. For ~ZZ �

0, it is convenient to express

A � �B
�
rb
rw

�
2‘
�1� ��; A0 � �B0

�
rb
rw

�
2‘
�1��0�;

(50)

and make use of Eqs. (48) and (49) to solve for � and �0 in
terms of the impedance ~ZZ�!�. Substituting Eq. (50) into
Eqs. (48) and (49), and making use of B � �bB0

[Eq. (47)], we obtain

kz�
0 � �b

�
!
c
�
‘
rw
i~ZZ
�
� � 2�b

‘
rw
i~ZZ;

�
‘
rw

�
!
c
i~ZZ
�
�0 � �bkzi~ZZ� � �2

�
�bkz �

!
c

�
i~ZZ: (51)
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Equation (51) can be used to determine closed expres-
sions for �0 and � in terms of the wall impedance ~ZZ�!�.
For example, if

j ~ZZj �

							!c
rw
‘

							;
							c!

‘
rw

							; (52)

then the approximate solutions to Eq. (51) are given
correct to leading order by

�0 � �2
!rw
‘c

�
1�

kzVb
!

�
i~ZZ�!�;

� � �2
‘c
!rw

�
1�

k2zr
2
w

‘2

�
1�

!
kzVb

��
i~ZZ�!�; (53)

where Vb � �bc. If we estimate ! � kzVb, then the in-
equalities in Eq. (52) assure that j�0j, j�j � 1, and that
the wall impedance contributions proportional to � and
�0 in Eq. (50) represent small corrections to the results for
a perfectly conducting wall.

In any case, we now make use of Eq. (50) to derive the
dispersion relation that determines � (generally com-
plex) in terms of the oscillation frequency ! and system
parameters such as the plasma frequency !̂!pb, depressed
betatron frequency )b, and wall impedance ~ZZ�!�.
Substituting Eq. (47) into Eq. (50), where � and �0 solve
Eq. (51), and making use of B � �bB0, we readily obtain

�ÂA‘z � �b�(̂(
‘ � �b

�
rb
rw

�
2‘
����0�8‘b� ̂ 

‘ � 0; (54)

and

�̂�A‘z��b

�
1�

�
rb
rw

�
2‘
�
8‘b� ̂ 

‘��b

�
rb
rw

�
2‘
�8‘b� ̂ 

‘�0;

(55)

where � ̂ ‘ � �(̂(‘ � �b�ÂA
‘
z . Rewriting �ÂA‘z � �b�(̂(

‘ �
�1=�2

b��A
‘
z � �b� ̂ 

‘, and eliminating �ÂA‘z from Eqs. (54)
and (55), we obtain

D‘
b���� ̂ ‘ � 0; (56)

where D‘
b��� is the dielectric function defined by

D‘
b��� � 1�

1

�2
b

�
1�

�
rb
rw

�
2‘
�
8‘b���

�

�
rb
rw

�
2‘
8‘b�����2

b�� �0�; (57)

and use has been made of �2
b � 1� 1=�2

b. The condition
for a nontrivial solution �� ̂ ‘ � 0� to Eq. (56) is

D‘
b��� � 0: (58)

Equation (58) is the final form of the dispersion rela-
tion derived from the linearized Vlasov-Maxwell
equations (25)–(27) for perturbations about the choice
of equilibrium distribution function in Eq. (2) with cor-
104402-9
responding flattop density profile in Eq. (4). The disper-
sion relation (58) is valid for low-frequency long-
wavelength perturbations consistent with Eqs. (12) and
(23), and can be applied over a wide range of normalized
beam intensity sb in the range 0< sb � !̂!2

pb=2�
2
b!

2
�? <

1. In the definition of D‘
b��� in Eq. (57), the response

function 8‘b��� is defined in Eq. (39) for general azimu-
thal mode number ‘ � 1; 2; . . . , and the quantities � and
�0 are determined in terms of the wall impedance ~ZZ�!�
from Eq. (51). In circumstances where Eq. (52) is satis-
fied, � and �0 are given approximately by Eq. (53).
Making use of Eq. (53) and �2

b � 1� 1=�2
b, it is readily

shown that

�2
b���0 ��2i~ZZ�!�

c‘
!rw

�
�2
b�

�
k2z�

!2

c2

�
r2w
‘2

�
k2zr

2
w

‘2�2
b

�
:

(59)

For k2zr2b=�
2
b, jk2z �!2=c2jr2w � �2

b [see also Eqs. (23)
and (24)], note that the last two terms in Eq. (59) can
be neglected, and Eq. (59) can be approximated by

�2
b�� �0 � �2i�2

b
c‘
!rw

~ZZ�!�: (60)

IV. WALL-IMPEDANCE-DRIVEN INSTABILITY
FOR DIPOLE-MODE PERTURBATIONS �‘ � 1�

The dispersion relation (58) can be used to investigate
detailed stability properties for azimuthal mode numbers
‘ � 1; 2; 3; . . . . For present purposes, we consider dipole-
mode perturbations with ‘ � 1. In this case, it follows
from Eq. (39) that the response function 8‘�1

b ��� is given
by

8‘�1
b ��� � �

!̂!2
pb=2

�2 � )2b
; (61)

where )2b � !2
�? � !̂!2

pb=2�
2
b. Substituting Eq. (61) into

Eq. (57), the dispersion relation (58) reduces to

D‘�1
b ��� � 1�

1

2�2
b

�
1�

r2b
r2w

� !̂!2
pb

�2 � )2b

�
1

2

r2b
r2w

��2
b�� �0�

!̂!2
pb

�2 � )2b
� 0; (62)

for dipole-mode perturbations with ‘ � 1. Here, � and
�0 are determined in terms of the wall impedance ~ZZ�!�
from Eq. (51). In the present analysis we approximate
�2
b���0 by Eq. (60) to the required accuracy, and

Eq. (62) reduces to

�2 � !2
�? �

�
r2b
rw

�
2!̂!2

pb

2�2
b

�

�
rb
rw

�
2
�2
b!̂!

2
pb

c
!rw

i~ZZ�!�;

(63)

where use has been made of )2b � !2
�? � !̂!2

pb=2�
2
b.
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We consider the case where the dipole perturbation has
real oscillation frequency ! � !0, and make use of
Eq. (63) to determine the complex solutions for � �
�r � i�i. Referring to Eq. (29), keep in mind that the
solutions with �Im��=Vb � �i=Vb > 0 correspond to
spatially amplifying perturbations proportional to
exp���i=Vb�Z�. Expressing ~ZZ�!0� � ~ZZr � i~ZZi, we rewrite
Eq. (63) as

�2 � X� iY; (64)

where

X � !2
�? �

�
rb
rw

�
2!̂!2

pb

2�2
b

�

�
rb
rw

�
2
�2
b!̂!

2
pb

c
!0rw

~ZZi � �2
0;

Y � �

�
rb
rw

�
2
�2
b!̂!

2
pb

c
!0rw

~ZZr: (65)

Solving Eq. (64) for � � �r � i�i readily gives

�r � �
1���
2

p �X� �X2 � Y2�1=2�1=2; (66)

and

�i � �
1���
2

p ��X� �X2 � Y2�1=2�1=2; (67)

where X � �2
0 > 0 is assumed. The solutions in Eq. (66)

correspond to sideband oscillations. Representing kz �
kzr � ikzi, then �r � Re�!0 � kzVz� � !0 � kzrVb, and
the upper ( � ) and lower ( � ) signs in Eq. (66) corre-
spond to excitations with phase velocity!0=kzr > Vb and
!0=kzr < Vb, respectively. Note from Eqs. (66) and (67)
that the upper sideband is damped ��i < 0�, whereas the
lower sideband is growing ��i > 0� whenever ~ZZr � 0
�Y � 0�. For the case of sufficiently low wall impedance
that jYj � X � �2

0, note that Eqs. (66) and (67) can be
approximated by

�r � ��0; �i � �
1

2

jYj
�0

; (68)

where �0 and Y are defined in Eq. (65).
We now consider Eqs. (66)–(68) in the three cases

corresponding to (a) perfectly conducting cylindrical
wall with ~ZZ�!� � 0; (b) conducting cylindrical wall
with conductivity 1 and ~ZZ�!� � 0; and (c) wall with
model impedance function ~ZZ�!�.

(a) Perfectly conducting cylindrical wall � ~ZZ � 0�.—
For a perfectly conducting wall with ~ZZ�!� � 0,
Eqs. (66) and (67) reduce to

�r � �!�?

�
1�

r2b
r2w

!̂!2
pb

2�2
b!

2
�?

�
1=2
; �i � 0: (69)

From Eq. (69), note that �r ’ �!�? whenever sb �
!̂!2
pb=2�

2
b!

2
�? � 1. On the other hand, for a space-

charge-dominated beam with sb ! 1, Eq. (69) reduces
to �r ’ �!�?�1� r2b=r

2
w�

1=2. In general, �2
r is reduced
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relative to !2
�? due to image charge effects [the term

proportional to �r2b=r
2
w��!̂!

2
pb=2�

2
b!

2
�?� in Eq. (69)].

(b) Conducting cylindrical wall with conductivity 1
�~ZZ � 0�.—For a smooth cylindrical wall with electrical
conductivity 1, the impedance function can be approxi-
mated by Eq. (21), or equivalently,

~ZZ�!0� �
!0

2c
��1� i�; (70)

where � � 1=�2�1!0�
1=2 is the skin depth. Substituting

Eq. (70) into Eqs. (65)–(68) gives

�r � ��0 ’ �!�?

�
1�

r2b
r2w

!̂!2
pb

2�2
b!

2
�?

�
1=2
;

�i � �
1

4

r2b
r2w
�2
b

!̂!2
pb

�0

�
rw
;

(71)

where we have neglected ~ZZi in the definition of �0 in
Eq. (65) for �� rw. Note from Eq. (71) that the lower
sideband with �r � ��0 is unstable �Im� � �i > 0�,
and that the growth rate is proportional to !̂!2

pb=�0, which
is an increasing function of the beam density n̂nb.
Moreover, the growth rate �i is linearly proportional
to the normalized skin depth �=rw, where � �
1=�2�1!0�

1=2 ! 0 as 1! 1.
(c) Wall with model impedance.—The interaction of an

intense beam with the induction modules of course de-
pends on the cavity design, details of the drive circuitry,
etc. This interaction is often modeled by a complex
coupling impedance [2,43,44] ~ZZ�!0� � ~ZZr�!0� �
i~ZZi�!0�, where

~ZZ r�!0� �
R

1�!2
0R

2C2 ;
~ZZi�!0� �

!0R2C

1�!2
0R

2C2 :

(72)

Here, R is the resistance associated with the external
drive source, C is the effective module capacitance, and
!0 is the excitation frequency. Equation (72) can be
substituted into Eqs. (65)–(67) to calculate the real fre-
quency �r and growth rate �i, including the effects of
the modification of �2

0 by finite ~ZZi due to the module
capacitance C [see Eqs. (65) and (72)]. For present pur-
poses, we neglect the ~ZZi contribution to �2

0, and make use
of Eq. (68), which gives

�r � ��0 ’ �!�?

�
1�

r2b
r2w

!̂!2
pb

2�2
b!

2
�?

�
1=2
;

�i � �
1

2

r2b
r2w
�2
b

!̂!2
pb

�0

c
!0rw

R

1�!2
0R

2C2 : (73)

Note that the growth rate �i in Eq. (73) is a maximum for
!2

0R
2C2 � 1=2.

In concluding this section it is evident that the main
stability results [Eqs. (67), (68), (71), and (73)] can be
applied over a wide range of system parameters
and models for the wall impedance ~ZZ�!�. Of particular
104402-10
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interest is the scaling of the growth rate �i � Im� with
normalized beam intensity sb � !̂!2

pb=2�
2
b!

2
�?. Making

use of Eqs. (65) and (68), where the ~ZZi contribution to �2
0

is neglected in Eq. (65), it is straightforward to show that
the growth rate of the lower sideband in Eq. (68) can be
expressed as

�i

!�?
�

�2
b�

2
bsbr

2
b=r

2
w

�1� sbr2b=r
2
w�

1=2

							 e
!0rw

~ZZr�!0�

							: (74)

The expression for growth rate in Eq. (74) is valid over
the entire range of normalized beam intensity sb ranging
from low-intensity beams with sb � 1 to space-charge-
dominated beams with sb ! 1. For fixed values of �b�b,
rb=rw, and ~ZZr, note from Eq. (74) that the growth rate �i
is an increasing function of normalized beam intensity
sb. Furthermore, for fixed values of �b�b, sb, and ~ZZr, the
growth rate �i increases as the conducting wall is
brought into closer proximity to the beam (increasing
values of r2b=r

2
w).

V. CONCLUSIONS

As noted in Sec. I, there has been considerable recent
analytical progress in applying the Vlasov-Maxwell
equations to investigate the detailed equilibrium and
stability properties of intense charged particle beams.
These investigations have included a wide variety of
diverse applications ranging from the Harris-like insta-
bility driven by large temperature anisotropy with T?b �
Tkb [37], to the dipole-mode two-stream instability for an
intense ion beam propagating through background elec-
trons [38], to the resistive hose instability [39] and the
sausage and hollowing instabilities [40] for intense beam
propagation through background plasma, to the develop-
ment of a nonlinear stability theorem [23,24] in the
smooth-focusing approximation. Building on these
advances, in the present analysis we have reexamined
the classical wall-impedance-driven instability [41–
46], making use of the linearized Vlasov-Maxwell equa-
tions for perturbations about a KV beam equilibrium
with flattop density profile, assuming a long charge
bunch (bunch length ‘b � bunch radius rb) propagating
through a cylindrical pipe with radius rw and wall im-
pedance ~ZZ�!�. The stability analysis (Secs. II and III) was
carried out for perturbations with azimuthal mode
number ‘  1 about a cylindrical KV beam in the
smooth-focusing approximation, leading to the disper-
sion relation (58). Detailed stability properties were de-
termined (Sec. IV) for dipole-mode perturbations
�‘ � 1�, assuming negligibly small axial momentum
spread of the beam particles. A key feature of the present
analysis is that the instability growth rate for the dipole
mode [Eq. (67)] is valid for the general value of the
normalized beam intensity sb � !̂!2

pb=2�
2
b!

2
�? in the

interval 0< sb < 1, where !̂!pb � �4�n̂nbe2b=�bmb�
1=2 is

the relativistic plasma frequency and !�? is the applied
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focusing frequency. Furthermore, the present analysis has
assumed a cold beam distribution function in the axial
direction with G�pz� � ��pz � �bmb�bc� in Eq. (2),
which corresponds to the case of the largest instability
growth rate. However, the kinetic analysis based on the
Vlasov-Maxwell equations can be extended in a straight-
forward manner to include the effects of Landau damping
by the beam ions [1,42], which will be examined in a
future investigation.

Finally, it is important to recognize that even for the
choice of KV distribution in the present analysis, detailed
stability properties do exhibit a dependence on kinetic
effects, e.g., through a dependence on quantities such as
the beam emittance. This is particularly evident for
higher-order multipole perturbations described by the
dispersion relation (58). In Eqs. (57) and (58), we note
that the response function 8‘b��� defined in Eq. (39) has a
rich harmonic content at harmonics of the depressed
betatron frequency defined in Eq. (6) by )b � !�?�1�
sb�1=2. Referring to Eq. (5), the depressed betatron fre-
quency is related to the transverse temperature T̂T?b and
beam radius rb by equilibrium force balance constraint
)2b � !2

�?�1� sb� � 2 T̂T?b=�bmbr
2
b. Therefore, for fixed

beam radius rb and applied focusing frequency !�?, low
beam intensity �sb � 1� corresponds to higher values of
T̂T?b (and therefore higher transverse emittance), whereas
high beam intensity �sb ! 1� corresponds to lower values
of T̂T?b (and therefore lower transverse emittance).
Therefore, through the force balance constraint, )2b �
!2
b?�1� sb� � 2 T̂T?b=�bmbr2b; the mode frequencies

and growth rates calculated from the dispersion relations
(58) do exhibit a sensitive dependence on the transverse
temperature T̂T?b.
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