
PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS, VOLUME 6, 024402 (2003)
Truncated thermal equilibrium distribution for intense beam propagation

Ronald C. Davidson and Hong Qin
Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543

Steven M. Lund
Lawrence Livermore National Laboratory, University of California, Livermore, California 94550

(Received 6 December 2002; published 24 February 2003)
024402-1
An intense charged particle beam with directed kinetic energy ��b � 1�mbc
2 propagates in the z

direction through an applied focusing field with transverse focusing force modeled by Ffoc �
��bmb!

2
�?x? in the smooth-focusing approximation. This paper examines properties of the axisym-

metric, truncated thermal equilibrium distribution Fb�r;p?� � A exp��H?=T̂T?b� � �H? � Eb�, where
A, T̂T?b, and Eb are positive constants, and H? is the Hamiltonian for transverse particle motion. The
equilibrium profiles for beam number density, nb�r� �

R
d2pFb�r;p?�, and transverse temperature,

T?b�r� � �nb�r���1
R
d2p�p2

?=2�bmb�Fb�r;p?�, are calculated self-consistently including space-
charge effects. Several properties of the equilibrium profiles are noteworthy. For example, the beam
has a sharp outer edge radius rb with nb�r 	 rb� � 0, where rb depends on the value of Eb=T̂T?b. In
addition, unlike the choice of a semi-Gaussian distribution, FSG

b � A exp��p2
?=2�bmbT̂T?b� � �r� rb�,

the truncated thermal equilibrium distribution Fb�r;p� depends on �r;p� only through the single-
particle constant of the motion H? and is therefore a true steady-state solution �@=@t � 0� of the
nonlinear Vlasov-Maxwell equations.

DOI: 10.1103/PhysRevSTAB.6.024402 PACS numbers: 29.27.Bd, 41.85.Ct, 41.85.Ew
FSG
b �

2��bmbT̂T?b

exp � ?

2�bmbT̂T?b

��r� rb�: (1) nonical angular momentum P� � xpy � ypx, and the
transverse Hamiltonian H? defined by
I. INTRODUCTION AND THEORETICAL
MODEL

This paper makes use of the nonlinear Vlasov-
Maxwell equations [1–4] to investigate the properties of
self-consistent intense beam equilibria �@=@t � 0� with a
sharp outer beam edge at radius r � rb. The analysis
considers an axially continuous charged particle beam
made up of particles with charge eb and rest mass mb
propagating in the z direction with directed axial kinetic
energy ��b � 1�mbc

2, where �b � �1� �2
b�

�1=2 is the
relativistic mass factor, Vb � �bc is the average axial
velocity of the beam particles, and c is the speed of light
in vacuo. The applied transverse focusing force on a beam
particle is modeled in the smooth-focusing approxima-
tion [1–3] by Ffoc � ��bmb!

2
�?x?, where !�? � const

is the applied focusing frequency, and x? � xêex 
 yêey is
the transverse displacement of a beam particle from the
axis. Finally, the particle motion in the beam frame is
assumed to be nonrelativistic. The main purpose of the
present analysis is to describe a particular choice of self-
consistent beam equilibrium distribution function, with a
sharp outer beam edge, that can serve as a useful alter-
native to a semi-Gaussian distribution.

By way of background, particle-in-cell simulations of
intense beam propagation [5–9] often make use of an
input distribution function, known as a semi-Gaussian
distribution, in which the phase-space dependence of the
transverse distribution function is taken to be of the form

n̂nb
�

p2 �
1098-4402=03=6(2)=024402(8)$20.00 
Here, p? � �p2
x 
 p2

y�
1=2 is the transverse particle mo-

mentum, r � �x2 
 y2�1=2 is the radial distance of a par-
ticle from the beam axis, n̂nb and T̂T?b are positive
constants, and ��x� is the Heaviside step function defined
by ��x� � 
1 for x < 0, and ��x� � 0 for x > 0. An
important feature of Eq. (1) is that the corresponding
number density of beam particles, nb�r� �

R
d2p?F

SG
b ,

has the simple uniform-density step-function profile,
nb�r� � n̂nb � �r� rb�, with a sharp beam edge at radius
r � rb, and nb�r > rb� � 0. Another feature of Eq. (1)
is that the local transverse temperature within the
beam is spatially uniform with

R
d2p�p2

?=2�bmb�F
SG
b �

T̂T?bnb�r�, where T̂T?b � const. A disadvantage of Eq. (1),
of course, is that an input distribution function such as
Eq. (1) does not correspond to a quasi-steady-state equi-
librium �@=@t � 0�, since FSG

b is not constructed from
single-particle constants of the motion [1,2,10]. Because
@FSG

b =@t � 0, particle-in-cell simulations based on
the initial distribution FSG

b can have a significant transi-
ent evolution of the distribution function, even in cir-
cumstances where the beam propagation is nominally
stable [9].

Consistent with the assumptions summarized above, a
self-consistent equilibrium solution �@=@t � 0� to the
nonlinear Vlasov-Maxwell equations can be constructed
from the single-particle constants of the motion in the
equilibrium field configuration. For an axisymmetric
beam �@=@� � 0�, the constants of the motion involving
the transverse particle dynamics correspond to the ca-
2003 The American Physical Society 024402-1
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H? �
p2
?

2�bmb

  �r�;

where

 �r� �
1

2
�bmb!

2
�?r

2 

eb
�2
b

 �r� (2)

is the effective radial potential. In Eq. (2), the equilibrium
space-charge potential  �r� is determined self-consis-
tently in terms of the equilibrium distribution function
Fb�r;p?� from Poisson’s equation

1

r
@
@r
r
@
@r
 �r� � �4�eb

Z
d2p?Fb�r;p?�; (3)

where nb�r� �
R
d2p?Fb�r;p?� is the number density of

beam particles. In solving Eq. (3), we take  �r � 0� �
0 �  �r � 0� without loss of generality. Any transverse
distribution function Fb�r;p?� that depends on �r;p?�
only through the variables H? and P� is an exact solution
to the steady-state nonlinear Vlasov-Maxwell equations
[1,2,10]. For a nonrotating beam, this dependence occurs
only through the perpendicular Hamiltonian H?, i.e.,

Fb�r;p?� � Fb�H?�; (4)

which is the class of beam equilibria considered in the
present analysis.

The organization of this paper is the following. In
Sec. II, the truncated thermal equilibrium distribution is
examined analytically. The implications of global radial
force balance are considered in Sec. III. Finally, in Sec. IV,
numerical solutions are obtained for the self-field poten-
tial and radial density profile over a wide range of system
parameters.

II. TRUNCATED THERMAL EQUILIBRIUM
DISTRIBUTION

Equations (2)–(4) have been extensively analyzed in
the literature [11–19] for the case of a thermal equilib-
rium distribution, Fb�H?� � A0 exp��H?=T̂T?b�, and
for a waterbag equilibrium distribution, Fb�H?� �
A00 � �H? � Eb�, where A0, A00, T̂T?b, and Eb are positive
constants. One characteristic of the thermal equilibrium
024402-2
distribution is that the (bell-shaped) density profile has an
exponentially small (but nonzero) value beyond the beam
edge. While the waterbag equilibrium has a sharp beam
edge at radius r � rb, there is no variation of Fb�H?� with
energy H? in the beam interior. In the present paper, we
combine these two distribution functions into a single
so-called truncated thermal equilibrium distribution
Fb�H?� defined by

Fb�H?� �
n̂nb

�2��bmbT̂T?b��1� exp��Eb=T̂T?b��

� exp��H?=T̂T?b� � �H? � Eb�: (5)

Here, n̂nb, T̂T?b, and Eb are positive constants, and n̂nb 
nb�r � 0� can be identified with the on-axis �r � 0� value
of number density because  �r � 0� � 0 �  �r � 0� is
assumed. Equation (5) is a fully self-consistent equilib-
rium solution �@=@t � 0� to the nonlinear Vlasov-
Maxwell equations within the context of the assumptions
enumerated earlier.

Substituting Eq. (5) into the definition of nb�r� �
2�

R
1
0 dp?p?Fb�H?� and carrying out the integration

over p? readily gives the equilibrium density profile

nb�r� �

(
n̂nb

�exp�� =T̂T?b��exp��Eb=T̂T?b��

�1�exp��Eb=T̂T?b��
; 0 � r < rb;

0; rb < r � rw;

(6)

where rw � const is the radius of a cylindrical, perfectly
conducting wall. Here, the outer edge radius of the beam
�r � rb� is determined self-consistently in terms of the
constant Eb from

 �r � rb� � Eb   b � const: (7)

This follows for the choice of distribution function in
Eq. (5) because the particle motion is constrained
to H? <Eb, or equivalently, p2

?=2�bmb < Eb �  �r�.
Therefore, the edge radius rb is determined from
 �r � rb� � Eb (where p? � 0), and there are no par-
ticles for r > rb. We substitute Eqs. (2) and (6) into
Poisson’s equation (3). This readily gives the closed non-
linear differential equation for  �r�,
1

r
@
@r
r
@
@r
 �r�

T̂T?b

�
2�bmb!2

�?

T̂T?b

�
1� ŝsb

�exp�� =T̂T?b� � exp��Eb=T̂T?b��

�1� exp��Eb=T̂T?b��
� �r� rb�

�
: (8)
In Eq. (8), the constant

ŝsb �
!̂!2
pb

2�2
b!

2
�?

(9)

is a dimensionless measure of the normalized beam in-
tensity, and !̂!pb � �4�n̂nbe2b=�bmb�

1=2 is the relativistic
plasma frequency at r � 0. A careful examination of
Eqs. (6) and (8) shows that the condition for existence
of a radially confined density profile [the condition
for nb�r� to be a nonincreasing function of r] is that
the normalized beam intensity satisfies ŝsb < 1.
From Eq. (8), the inequality ŝsb < 1 assures that
fr�1�@=@r��r@ =@r�gr�0 > 0 and hence that nb�r� de-
creases monotonically as a function of increasing r (see
also the discussion on pp. 200–201 of Ref. [1]). Whenever
the inequality ŝsb < 1 is satisfied, the solution to Eq. (8)
024402-2
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for  �r� increases monotonically from  �r � 0� � 0 to
the value  �r � rb� � Eb   b at the outer edge of the
beam. Correspondingly, from Eq. (6), the number density
nb�r� decreases from the value nb�r � 0� � n̂nb at r � 0,
to nb�r � rb� � 0 at the beam edge.

Other equilibrium properties can also be calculated
for the choice of truncated thermal equilibrium dis-
024402-3
tribution in Eq. (5). For example, the transverse pres-
sure profile is defined by P?b�r� � nb�r�T?b�r� �
2�

R
1
0 dp?p?�p2

?=2�bmb�Fb�H?� [10,18]. Making use
of Eqs. (5) and (6), and integrating over p?, some
straightforward algebraic manipulation shows that the
transverse temperature profile T?b�r� for the choice of
distribution function in Eq. (5) is given by
T?b�r� � T̂T?b
fexp�� =T̂T?b� � �1
 �Eb �  �=T̂T?b� exp��Eb=T̂T?b�g

�exp�� =T̂T?b� � exp��Eb=T̂T?b��
(10)
for 0 � r < rb. From  �r � 0� � 0, we note from Eq. (10)
that the on-axis value of transverse temperature
is T?b�r� 0� � T̂T?bf1��Eb=T̂T?b�=�exp�Eb=T̂T?b�� 1�g.
Furthermore, for a finite value ofEb=T̂T?b, it can be shown
directly from Eq. (10) that the transverse temperature
near the beam edge decreases monotonically to zero
value, T?b�r� rb� � 0, with T?b�r� ’ �1=2��Eb� �r��
as r! rb and  �r� ! Eb �  �rb�.

For specified values of the dimensionless parameters
ŝsb � !̂!2

pb=2�
2
b!

2
�? and Eb=T̂T?b, Eq. (8) can be solved

numerically for  �r�=T̂T?b, and the corresponding density
profile nb�r� and transverse temperature profile T?b�r�
determined self-consistently from Eqs. (6) and (10), re-
spectively, over a wide range of system parameters. Of
course, in the limiting case Eb=T̂T?b ! 1, Eqs. (6) and
(10) reduce to the bell-shaped density profile, nb�r� �
n̂nb exp�� �r�=T̂T?b�, and uniform transverse temperature
profile, T?b�r� � T̂T?b � const, corresponding to thermal
equilibrium [10,18]. On the other hand, as noted earlier,
for a finite value of Eb=T̂T?b the beam equilibrium de-
scribed by Eqs. (5), (6), (8), and (10) has a sharp radial
edge at r � rb determined from  �r � rb� � Eb.
Moreover, the density and temperature profiles in
Eqs. (6) and (10) decrease monotonically to zero as r!
rb. This is expected for the choice of distribution function
in Eq. (5) because the maximum transverse Hamiltonian
is �H?�max � Eb, and the radial location r � rb corre-
sponds to the envelope of turning points in the transverse
particle orbits for which �p2

?� � 0 and  �r � rb� � Eb
[see Eq. (2)].

III. GLOBAL RADIAL FORCE BALANCE

Before examining specific numerical solutions to
Eqs. (6), (8), and (10), we summarize here an important
constraint corresponding to global radial force balance
[20,21] satisfied by the entire class of beam equilibria
described by Eq. (4). We define the statistical average of a
phase function # by

h#i �
1

Nb

Z
d2xd2p#Fb�H?�; (11)

where Nb �
R
d2xd2pFb�H?� � 2�

Rrb
0 drrnb�r� is the

number of beam particles per unit axial length, and
nb�r� � 2�
R
1
0 dp?p?Fb�H?� is the number density.

Therefore, from Eq. (11), the mean-square beam radius
R2
b � hr2i and the average transverse kinetic energy

h�p2
x 
 p2

y�=2�bmbi can be expressed as

R2
b �hr2i �

2�
Nb

Z rb

0
drrr2nb�r�;�

p2
x 
 p2

y

2�bmb

	
�hT?b�r�i �

2�
Nb

Z rb

0
drrT?b�r�nb�r�; (12)

where nb�r�T?b�r��P?b�r��2�
R
1
0 dp?p?�p

2
?=2�bmb��

b�H?� is the transverse pressure profile. For the general
class of equilibrium distributions in Eq. (4), it can
be shown that local radial force balance on a beam
fluid element is given by [10,20,21] @P?b=@r�
��bmb!2

�?nbr��nbeb=�2
b�@ =@r. Without presenting

algebraic details, operating with �2�=Nb�
Rrb
0 drr

2 ���
gives the exact global radial force balance condition
[10,20,21]

�bmb!
2
�?R

2
b�

Nbe2b
�2
b


2hT?b�r�i; (13)

where R2
b and hT?b�r�i are defined in Eq. (12).

Equation (13) shows clearly that there are two contri-
butions to the mean-square beam radius R2

b � hr2i. The
term proportional to Nbe

2
b=�

2
b � Nbe

2
b�1� �2

b� corre-
sponds to the space-charge contribution �Nbe

2
b� reduced

by self-magnetic field effects ��Nbe2b�
2
b�, and the term

proportional to 2hT?b�r�i corresponds to the emittance
contribution, proportional to the average transverse tem-
perature of the beam particles. Indeed, it is instructive to
introduce the familiar quantities corresponding to self-
field perveance �Kb�, smooth-focusing lattice coefficient
�'sf�, and unnormalized beam emittance �(� defined by

Kb 
2Nbe2b

�3
bmb�2

bc
2 ; 'sf 

!2
�?

�2
bc

2 ;

(2 4hx2 
 y2i
�
p2
x 
 p2

y

�2
bm

2
b�

2
bc

2

	
�

8

�bmb�
2
bc

2 R
2
bhT?b�r�i:

(14)

Then, making use of Eq. (14), the radial force condition
in Eq. (13) can be expressed in the equivalent form
024402-3
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�
'sf �

Kb
2R2

b

�
Rb �

(2

4R3
b

; (15)

which is identical to the familiar envelope equation relat-
ing the rms beam radiusRb to 'sf ,Kb, and (. For specified
values of self-field perveance �Kb�, focusing field strength
�'sf�, and transverse emittance �(�, Eq. (15) gives a closed
expression for the mean-square beam radius,

R2
b �

Kb
4'sf




��
Kb
4'sf

�
2



(2

4'sf

�
1=2
: (16)

The radial force balance condition in Eq. (13), or
equivalently, Eq. (15), is applicable to the entire class of
self-consistent beam equilibria described by Eq. (4), in-
cluding the special choice of Fb�H?� in Eq. (5).
Moreover, Eqs. (13) and (15) are applicable over the full
range of system parameters ranging from emittance-
dominated beams, where

R2
b ’

2

�bmb!2
�?

hT?b�r�i �
(

2








'sf

p (17)

for hT?b�r�i � Nbe2b=2�
2
b (or (� Kb=2









'sf

p
), to space-

charge-dominated beams, where

R2
b ’

Nbe
2
b

�3
bmb!

2
�?

�
Kb
2'sf

(18)

for Nbe2b=2�
2
b � hT?b�r�i (or Kb=2









'sf

p
� ().

In analyzing Eqs. (6), (8), and (10) it is important to
recognize the powerful constraint on system parameters
imposed by the radial force balance condition in Eq. (13)
[or Eq. (15)], which relates R2

b, Nb, and hT?b�r�i. For
example, when solving Eq. (8) for  �r� for a specified
value of normalized beam intensity ŝsb � !̂!2

pb=2�
2
b!

2
�?,

the low-intensity regime �ŝsb � 1� corresponds to an
emittance-dominated beam satisfying Eq. (17). On the
other hand, the high-intensity limit �ŝsb ! 1� corresponds
to the space-charge-dominated regime satisfying Eq. (18).

In addition to ŝsb, another convenient measure of self-
field intensity is provided by the rms-equivalent tune
depression )=)0 defined by

)
)0

�

�
1�

Kb
2'sfR

2
b

�
1=2

�

�
1�

Nbe
2
b

�3
bmb!

2
�?R

2
b

�
1=2
: (19)
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In the low-intensity regime (ŝsb � 1 andKb=2'sfR2
b � 1)

note that Eq. (19) reduces to )=)0 ’ 1� Kb=4'sfR
2
b.

On the other hand, in the space-charge-dominated
limit (ŝsb ! 1 and Kb=2'sfR2

b ! 1), Eq. (19) reduces to
)=)0 ! 0.

IV. EXAMPLES OF EQUILIBRIUM
PROFILES

For specified values of the dimensionless parameters
ŝsb � !̂!2

pb=2�
2
b!

2
�? and Eb=T̂T?b, Eq. (8) can be solved

numerically for the normalized self-field potential
 �r�=T̂T?b, integrating from r � 0 where  �r � 0� �
0 � �@ =@r�r�0. For specified values of ŝsb and Eb=T̂T?b,
note from Poisson’s equation (8) that a natural dimen-
sionless radial coordinate is r=r� where r� �
�2T̂T?b=�bmb!

2
�?�

1=2. Once  �r� is determined numeri-
cally, the edge radius rb of the beam is obtained from
 �r � rb� � Eb, and the density profile nb�r� and trans-
verse temperature profile T?b�r� are determined self-
consistently from Eqs. (6) and (10), respectively.
Analytical solutions to Eq. (8) are accessible in two
limiting cases, which are useful to benchmark the nu-
merical solutions. The first case corresponds to a low-
intensity (emittance-dominated) beam with ŝsb � 1 and
hT?b�r�i � 0. The second case corresponds to a high-
intensity (space-charge-dominated) beam with ŝsb ! 1
and hT?b�r�i ! 0.

A. Low-intensity beam equilibrium �ŝsb � 1�

For ŝsb � 1, the space-charge contribution propor-
tional to ŝsb in Eq. (8) can be neglected to leading
order, which gives  �r� ’ ��bmb!

2
�?=2�r

2. We determine
rb from  �r � rb� � Eb, which gives r2b �
2Eb=�bmb!2

�?. Substituting into Eqs. (6) and (10) then
gives the density and temperature profiles

nb�r� � n̂nb
fexp���r2=r2b��Eb=T̂T?b�� � exp��Eb=T̂T?b�g

f1� exp��Eb=T̂T?b�g
� ��r� rb�;

(20)
and
T?b�r� � T̂T?b
fexp���r2=r2b��Eb=T̂T?b�� � �1
 �Eb=T̂T?b��1� r2=r2b�� exp��Eb=T̂T?b�g

fexp���r2=r2b��Eb=T̂T?b�� � exp��Eb=T̂T?b�g
� �r� rb�: (21)
Illustrative plots of nb�r�=n̂nb and T?b�r�=T?b�r � 0� ver-
sus r=rb are shown in Fig. 1 for the case where Eb=T̂T?b �
0:1; 1; 10. Note from Eqs. (20) and (21) that the beam has
a sharp edge at radius r � rb, and that the profiles for
nb�r� and T?b�r� approach zero continuously as r! rb.
Furthermore, in the limit Eb=T̂T?b ! 1, Eqs. (20) and
(21) reduce to the Gaussian density profile nb�r� �
n̂nb exp���bmbr

2!2
�?=2T̂T?b� and uniform temperature

profile T?b�r� � T̂T?b � const. On the other hand, for
Eb=T̂T?b � 1, Eqs. (20) and (21) can be approximated
by the parabolic profiles nb�r� � n̂nb�1� r2=r2b� and
T?b�r� � �Eb=2��1� r2=r2b� for 0 � r < rb.
024402-4
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FIG. 2. Plot of normalized density nb�r�=n̂nb versus r=rb
[Eq. (22)] for space-charge-dominated beam with ŝsb ! 1.
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FIG. 1. Plots of normalized (a) density nb�r�=n̂nb and (b)
temperature T?b�r�=T?b�r � 0� versus r=rb obtained from
Eqs. (20) and (21) for ŝsb � 1, and Eb=T̂T?b � 0:1; 1; 10.
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B. Space-charge-dominated beam equilibrium �ŝsb !
1; hT?bi ! 0�

As a second limiting case that is analytically tractable,
we consider Eqs. (5), (6), (8), and (10) in the cold, space-
charge-dominated regime with ŝsb � !̂!2

pb=2�
2
b!

2
�? ! 1,

and hT?b�r�i ! 0 corresponding to T̂T?b ! 0 and ÊEb ! 0.
In this case, the applied focusing force and the (repulsive)
space-charge force exactly cancel in the beam interior,
and the solutions to Eqs. (6), (8), and (10) reduce to
 �r� � 0, T?b�r� � 0, and

nb�r� � n̂nb � �r� rb� (22)

for 0 � r < rb. Note from Eq. (21) and Fig. 2 that the
beam density profile is uniform with nb�r� � n̂nb � const
in the beam interior. Furthermore, for ŝsb ! 1, the beam
edge radius rb �





2

p
Rb is readily determined from r2b �

2Nbe2b=�
3
bmb!2

�? [see Eq. (18)], where Nb � n̂nb�r2b is the
axial line density.

Comparing Figs. 1 and 2, there is a large variation in
the shape of the density profile nb�r� between the low-
intensity regime (ŝsb � 1 in Fig. 1) and the space-charge-
dominated regime (ŝsb ! 1 in Fig. 2). For general values
of ŝsb and Eb=T̂T?b, Eq. (8) can be solved numerically for
 �r�, and the corresponding self-consistent profiles
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for nb�r� and T?b�r� determined from Eqs. (6) and (10).
Typical numerical solutions are illustrated in Figs. 3–6.

Shown in Fig. 3 are plots of the normalized potential
 �r�=T̂T?b versus r=rb obtained numerically from Eq. (8)
for several values of normalized beam intensity ŝsb �
!̂!2
pb=2�

2
b!

2
�? and values of Eb=T̂T?b ranging from 0:1

to 10. The corresponding values of tune depression
)=)0 [Eq. (19)] are also shown in Fig. 3. Note from
Fig. 3 that  �r� increases monotonically from  �r � 0� �
0 to  �r � rb� � Eb at the beam edge. Moreover, com-
paring Figs. 3(a) and 3(b),  �r� is nearly parabolic in the
beam interior when ŝsb � 1 [ŝsb � 0:1 in Fig. 3(a)],
whereas  �r� remains close to zero in the beam interior,
and increases rapidly to  �rb� � Eb near the beam edge
when ŝsb ! 1 [ŝsb � 0:999 in Fig. 3(d)]. At high space-
charge intensity with ŝsb ! 1, note from Fig. 3(d)
that the effective potential  �r� � �bmb!2

�?r
2=2


�eb=�
2
b� �r� is approximately zero over a broad interior

region of the beam, corresponding to a near cancellation
of the applied focusing force and the (repulsive) self-field
force. The solutions for  �r�=T̂T?b in Fig. 3 are used to
determine the corresponding self-consistent density and
temperature profiles from Eqs. (6) and (10). The results
are illustrated in Figs. 4 and 5 where the normalized
density nb�r��r2b=Nb and temperature T?b�r�=T̂T?b are
plotted versus r=rb for values of ŝsb and Eb=T̂T?b similar
to those in Fig. 3. Note from Fig. 4(a) that nb�r� has a
diffuse, bell-shaped profile for ŝsb � 0:1, whereas in
Fig. 4(d) nb�r� has an extended flattop profile in the
beam interior for ŝsb � 0:999, as expected. Moreover,
from Fig. 5, the transverse temperature profile T?b�r�
decreases rather abruptly to zero at the beam edge �r �
rb�, although T?b�r� tends to be relatively uniform in the
beam interior for Eb=T̂T?b > 2.

Finally, we have made use of Eqs. (6)–(8) and (12) to
determine the edge radius rb and rms beam radius Rb over
a range of system parameters ŝsb and Eb=T̂T?b. Shown in
Fig. 6 are plots of (a) rb=Rb versus ŝsb and (b) rb=Rb versus
)=)0 obtained from Eqs. (6)–(8) and Eqs. (12) and (19)
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FIG. 6. Plots of normalized edge radius (a) rb=Rb versus ŝsb and (b) rb=Rb versus )=)0 obtained from Eqs. (6)–(8) and Eqs. (12)
and (19) for several values of Eb=T̂T?b ranging from 0:1 to 10.
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for several values of Eb=T̂T?b. Note from Fig. 6 that rb=Rb
is a slowly varying function of ŝsb and )=)0 and increases
as Eb=T̂T?b is increased.
V. CONCLUSIONS

In this paper, we examined properties of the axisym-
metric truncated thermal equilibrium distribution de-
fined in Eq. (5). General equilibrium properties were
discussed in Secs. II and III, and expressions for the
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density profile nb�r� and transverse temperature profile
T?b�r� were derived in terms of the effective potential
 �r� [see Eqs. (6) and (10)], where  �r� solves the non-
linear Poisson equation (8). Detailed numerical solutions
to Eqs. (6), (8), and (10) were presented in Sec. IV for a
wide range of dimensionless system parameters corre-
sponding to sb � !̂!2

pb=2�
2
b!

2
�? and Eb=T̂T?b. Several

properties of the equilibrium profiles are noteworthy.
For example, the beam has a sharp outer edge radius rb
with nb�r 	 rb� � 0, where rb depends on the value of
024402-7
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Eb=T̂T?b. In addition, unlike the choice of a semi-
Gaussian distribution, FSG

b � A exp��p2
?=2�bmbT̂T?b�

� � �r� rb�, the truncated thermal equilibrium distribu-
tion in Eq. (5) depends on �r;p?� only through the single
particle constant of the motion H? and is therefore a true
steady-state solution �@=@t � 0� of the nonlinear Vlasov-
Maxwell equations. It is anticipated that the choice of
distribution function in Eq. (5) will be useful in imple-
menting particle-in-cell simulations of intense beams
without large initial transient evolutions and incorporat-
ing the important feature of a beam with a sharp outer
edge radius.

Finally, it should be pointed out that the present analy-
sis also applies to an intense rotating beam propagating
through a uniform solenoidal magnetic field B0êez in
circumstances where the beam particles have zero aver-
age canonical angular momentum hP�i � r�hp�i 

ebB0r=2c� � 0. In this case, we make the replacement
!�? ! !cb=2; and all variables are interpreted as being
measured in a frame of reference rotating with the
Larmor frequency !cb=2 � �ebB0=2�bmbc relative to
the laboratory frame.
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