
Nuclear Instruments and Methods in Physics Research A 464 (2001) 358–368

Analytical and nonlinear perturbative simulation studies of the
equilibrium and stability properties of intense charged particle

beams for heavy ion fusionq

Ronald C. Davidson*, Hong Qin, W. Wei-li Lee, Sean Strasburg

Plasma Physics Laboratory, Princeton University Princeton, New Jersey, NJ 08543, USA

Abstract

This paper presents an overview of recent analytical and numerical investigations of collective processes in intense ion
beams at the Plasma Physics Laboratory based on the nonlinear Vlasov–Maxwell equations. The topics covered

include: (a) nonlinear stability theorem for quiescent beam propagation at high space-charge intensities; (b)
development and application of Hamiltonian averaging techniques for intense beam propagation through alternating-
gradient field configurations; (c) kinetic studies of the electron–ion two-stream instability which occurs when an

(unwanted) component of electrons is present in the beam transport line; (d) application of the newly developed three-
dimensional, multispecies, nonlinear perturbative particle simulation scheme, called the Beam Equilibrium, Stability
and Transport (BEST) code, to investigate the linear and nonlinear dynamics of intense beam propagation, including

the electron–ion two-stream instability; and (e) investigations of the role of collective mode excitations in the expulsion
of particles from the beam core and the production of halo particles. Finally, the linear growth properties of instabilities
driven by pressure anisotropy are investigated within the framework of a macroscopic warm-fluid model. # 2001
Elsevier Science B.V. All rights reserved.

0. Introduction

Periodic focusing accelerators and transport
systems [1–8] have a wide range of applications
ranging from basic scientific research in high
energy and nuclear physics, to applications such
as heavy ion fusion, spallation neutron sources,
tritium production, and nuclear waste treatment,
to mention a few examples. Of particular interest,
at the high beam currents and charge densities of
practical interest, are the combined effects of the
applied focusing field and the intense self-fields

produced by the beam space charge and current on
determining detailed equilibrium, stability, and
transport properties [1–3]. Through basic experi-
mental studies, analytical investigations based on
the nonlinear Vlasov–Maxwell equations, and
numerical simulations using particle-in-cell models
and nonlinear perturbative simulation techniques,
considerable progress has been made in developing
an improved understanding of the collective
processes and nonlinear beam dynamics character-
istic of high-intensity beam propagation [9–38] in
periodic focusing and uniform focusing transport
systems. Nonetheless, it remains important to
develop an improved basic understanding of the
nonlinear dynamics and collective processes in
periodically focused intense charged particle
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beams, with the goal of identifying operating
regimes for stable (quiescent) beam propagation
over hundreds, even thousands, of lattice periods
of the periodic focusing magnetic field, including a
minimum degradation of beam quality and lumin-
osity.

This paper presents a brief summary of selected
heavy ion fusion research activities carried out at
the Princeton Plasma Physics Laboratory since the
1997 Heidelberg symposium on heavy ion fusion
[7], with particular emphasis on analytical and
numerical simulation studies of collective pro-
cesses in intense beam propagation. The work
summarized here includes: development of a three-
dimensional stability theorem for intense beam
propagation based on the nonlinear Vlasov–
Maxwell equations (Section 1); analytical and
numerical studies of the electron–ion two-stream
instability in high-intensity ion beams (Section 2);
warm-fluid investigations of collective instabilities
driven by pressure anisotropy in intense charged
particle beams (Section 3); studies of halo particle
production by collective mode excitations (Section
4); and the development of Hamiltonian averaging
techniques for describing intense beam propaga-
tion through periodic focusing field configurations
(Section 5).

1. Three-dimensional kinetic stability theorem for

high-intensity beam propagation

In a recent calculation [18,19], global conserva-
tion constraints obtained from the nonlinear
Vlasov–Maxwell equations have been used to
derive a three-dimensional kinetic stability theo-
rem for an intense nonneutral ion beam (or charge
bunch) propagating in the z-direction with average
axial velocity Vb ¼ bbc ¼ const: and characteristic
kinetic energy ðgb � 1Þmbc

2 in the laboratory
frame. The particle motion in the beam frame
(‘primed’ coordinates) is assumed to be nonrelati-
vistic, and the beam is assumed to have sufficiently
high directed axial velocity that Vb4jv0j. Space-
charge effects and transverse electromagnetic
effects are incorporated in the analysis in a fully
self-consistent manner. The nonlinear Vlasov–
Maxwell equations are Lorentz-transformed to

the beam frame, and the applied focusing potential
is assumed to have the (time-stationary) form in
the smooth-focusing approximation

c0
sf ðx

0Þ ¼ 1
2gbmb½o2

b?ðx
02 þ y02Þ þ o2

bzz
02
 ð1Þ

where ob? and obz are constant focusing frequen-
cies. Using global conservation constraints satis-
fied by the nonlinear Vlasov–Maxwell equations, it
is shown [18] that a sufficient condition for linear
and nonlinear stability for perturbations with
arbitrary polarization about a beam equilibrium
distribution feqðx0; p0Þ is that feq be a monotonically
decreasing function of the single-particle energy H 0

in the beam frame, i.e.

@

@H 0feqðH
0Þ40: ð2Þ

Here, H 0 is defined by

H 0 ¼
1

2mb
p02 þ c0

sf ðx
0Þ þ qbf

0
eqðx

0Þ ð3Þ

where f0
eqðx

0Þ is the space-charge potential. This
theorem represents a very powerful result since it
identifies the class of beam distribution functions
that can propagate quiescently over large dis-
tances. Most notably, it applies to perturbations
about beam equilibria feqðH 0Þ with arbitrary wave
polarization and initial amplitude; to continuous
beams that are radially confined and infinite in
axial extent ðob? 6¼ 0; obz ¼ 0); to charge bunches
that are radially and axially confined (ob? 6¼ 0 and
obz 6¼ 0); and to beams with arbitrary space-
charge intensity consistent with the applied focus-
ing potential c0

sf ðx
0Þ providing confinement of the

beam particles. The nonlinear stability theorem
[18] embodied in Eqs. (2) and (3) represents a
major generalization of the stability theorem first
developed by Newcomb and Gardner for pertur-
bations about a spatially uniform, charge-neutral
plasma, and extended by Davidson and Krall to
the case of electrostatic nonneutral plasma column
[19].

Recently, the df formalism, a low-noise, non-
linear perturbative particle simulation technique,
has been developed for intense beam applications,
and applied to matched-beam propagation in a
periodic focusing field [20–22] and other related
studies. Using the newly developed Beam Equili-
brium, Stability and Transport (BEST) code
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[39–41], a 3D multispecies, nonlinear perturbative
simulation code, we have tested the nonlinear
stability theorem in Eq. (2) for the particularly
choice of a thermal equilibrium distribution
feqðH 0Þ ¼ b expð�H 0=TbÞ, where b and Tb are
positive constants, and obz ¼ 0 is assumed (con-
tinuous beam in the axial direction). Typical
simulation results [41] are illustrated in Fig. 1,
where initial low-level noise in the perturbed
density, dnb ¼

R
d3p dfb is introduced at t ¼ 0,

and the simulations show that the beam propa-
gates quiescently over 1200 equivalent lattice
periods. The system parameters assumed in
Fig. 1 are gb ¼ 1:08, mass number A ¼ 133 (Ce-
sium ions, and #o2

pb=2g
2
bo

2
b? ¼ 0:95, where #o2

pb ¼
4p #nbq2b=gbmb is the on-axis ðr ¼ 0Þ plasma fre-
quency-squared.

2. Kinetic description of electron–ion two-stream

instability in high-intensity ion beams

For a one-component high-intensity beam,
considerable progress has been made in describing
the self-consistent evolution of the beam distribu-
tion function fbðx; p; tÞ and the self-generated
electric and magnetic fields in kinetic analyses [4–
26] based on the Vlasov–Maxwell equations. In
many practical accelerator applications, however,
an (unwanted) second charge component is pre-
sent. For example, a background population of
electrons can result by secondary emission when
energetic beam ions strike the chamber wall, or
through ionization of background neutral gas by
the beam ions. When a second charge component
is present, it has been recognized for many years,
both in theoretical studies and in experimental

observations [27,28,42,43], that the relative
streaming motion of the high-intensity beam
particles through the background charge species
provides the free energy to drive the classical two-
stream instability, appropriately modified to in-
clude the effects of dc space charge, relativistic
kinematics, presence of a conducting wall, etc. A
well-documented example is the electron–proton
two-stream instability observed in the Proton
Storage Ring [27,28,37], although a similar in-
stability also exists for other ion species, including
(for example) electron–ion interactions in electron
storage rings [29–34].

In a recent analysis [42,43], we have made use of
the Vlasov–Maxwell equations to develop a fully
kinetic description of the electron–ion two-stream
instability driven by the directed axial motion of a
high-intensity ion beam propagating in the z-
direction with average axial momentum gbmbbbc
through a stationary population of background
electrons. The ion beam has characteristic radius
rb and is treated as continuous in the z-direction,
and the applied transverse focusing force on the
beam ions is modeled by Fb

foc ¼ �gbmbo2
bbx? in

the smooth-focusing approximation. Here, obb ¼
const: is the effective betatron frequency associated
with the applied focusing field, x? is the transverse
displacement from the beam axis, ðgb � 1Þmbc

2 is
the ion kinetic energy, and Vb ¼ bbc is the average
axial velocity, where gb ¼ ð1� b2bÞ

�1=2 is the
relativistic mass factor. Furthermore, the ion
motion in the beam frame is assumed to be
nonrelativistic, and the electron motion in the
laboratory frame is assumed to be nonrelativistic.
The ion charge and number density are denoted by
qb ¼ Zbe and nb, and the electron charge and
number density by �e and ne. For Zbnb > ne, the
electrons are electrostatically confined in the
transverse direction by the space-charge potential
f produced by the excess ion charge. The
equilibrium and stability analysis retains the effects
of finite radial geometry transverse to the beam
propagation direction, including the presence of a
perfectly conducting cylindrical wall located at
radius r ¼ rw. In addition, the analysis assumes
perturbations with long axial wavelength

k2
zr

2
b51: ð4Þ

Fig. 1. Time history of dnb= #nb for small-amplitude perturba-

tions about a thermal equilibrium ion beam.
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We introduce the ion plasma frequency-squared
defined by #o2

pb ¼ 4p #nbZ2
be

2=gbmb, and the frac-
tional charge neutralization defined by
f ¼ #ne=Zb #nb, where #nb and #ne are the characteristic
ion and electron densities. The equilibrium and
stability analysis is carried out for arbitrary
normalized beam intensity #o2

pb=o
2
bb, and arbitrary

fractional charge neutralization f , consistent with
radial confinement of the beam particles.

For the moderately high beam intensities envi-
sioned in the proton linacs and storage rings for
the Spallation Neutron Source, the normalized
beam intensity is typically #o2

pb=2g
2
bo

2
bb90:1. Typi-

cal numerical results [41] using the BEST non-
linear perturbative simulation code are illustrated
in Fig. 2 for the case of an intense proton
beam with gb ¼ 1:85; #o2

pb=2g
2
bo

2
bb ¼ 0:074, and

Tb?=gbmbV
2
b ¼ 3:61� 10�6, propagating through

stationary background electrons with Ve ¼ 0;
Te?=gbmbV

2
b ¼ 5:86� 10�7, and fractional charge

neutralization f ¼ #ne= #nb ¼ 0:1. Note from Fig. 2
that the x � y projection of the perturbed space-
charge potential dfðx; y; z; tÞ develops a strong
dipole ð‘ ¼ 1Þ feature during the exponential
growth phase, which is consistent with analytical
predictions [42,43]. The ions and electrons are
taken to be initially cold in the axial direction
ðvTbz ¼ 0 ¼ vTezÞ for the simulation shown in
Fig. 2.

For heavy ion fusion applications, however, the
transverse beam emittance is very small, and the
space-charge-dominated beam intensity is much
larger, with #o2

pb=2g
2
bo

2
bb91. The stability analysis

shows [42,43] that the instability growth rate Imo
increases with increasing normalized beam inten-
sity #o2

pb=o
2
bb, and increasing fractional charge

neutralization f . In addition, the instability is
strongest (largest growth rate) for perturbations
with azimuthal mode number ‘ ¼ 1, correspond-
ing to a simple (dipole) transverse displacement of
the beam ions and the background electrons. For
the case of overlapping step-function density
profiles for the beam ions and background
electrons, corresponding to monoenergetic ions
and electrons in the transverse direction, a key
result is that there is no threshold in beam intensity
or fractional charge neutralization for the onset of
instability in circumstances where the beam ions

are ‘cold’ in the axial direction (negligible axial
momentum spread). On the other hand, introduc-
tion of a small axial momentum spread Dpzj can be
sufficient to stabilize the two-stream instability by
longitudinal Landau damping effects [44,45]. This
is illustrated in Fig. 3, where the unstable solution
to the quartic dispersion relation obtained from
the linearized Vlasov–Maxwell equations [45]
is plotted for system parameters corresponding
to #o2

pb=2g
2
bo

2
bb ¼ 0:98; Zb ¼ 1; A ¼ 133 (cesium

Fig. 2. The x–y projection (at fixed value of z) of the perturbed

electrostatic potential dfðx; y; tÞ for the electron–ion two-stream

instability growing from a small initial perturbation, shown at

(a) t ¼ 0, and (b) obbt ¼ 200.

R.C. Davidson et al. / Nuclear Instruments and Methods in Physics Research A 464 (2001) 358–368 361

VIII. BEAM DYNAMICS



ions), ðgb � 1Þmbc
2 ¼ 4:5 GeV; rb=rw ¼ 0:5 f ¼

0:1, and several values of vTbz=Vb ¼ Dpzb=gbmb

Vb ranging from 0 to 0:01. In Fig. 3, the normal-
ized growth rate Imo=obb is plotted versus
normalized axial wavenumber ðkz � kz0ÞVb=obb ,
and we have taken vTez ¼ vTbz for purposes of
illustration. Note from Fig. 3 that a relatively
small axial momentum spread is adequate to
stabilize the electron–ion two-stream instability
by longitudinal Landau damping effects. If the
beam ions and background electrons are initially
cold axially, then a likely nonlinear consequence of
the instability would be to cause an increase in
axial momentum spread, thereby leading to a
stabilization of the instability by parallel kinetic
effects.

3. Warm-fluid description of collective instabilities

driven by pressure anisotropy in intense charged

particle beams

In general, a complete description of collective
processes in intense nonneutral beams requires
a knowledge of the beam distribution function
fbðx; p; tÞ in the six-dimensional phase space ðx; pÞ,

in order to carry out numerical simulations using
the distribution function as an initial condition, or
to carry out analytical studies of kinetic equili-
brium and stability behavior. While considerable
progress has been made in analytical investigations
based on the Vlasov–Maxwell equations [9–19],
such kinetic analyses are often complex, even
under idealized assumptions. It is therefore im-
portant to develop and test the robustness of
alternative theoretical models, such as macro-
scopic models [46–49]1 based on the fluid-Maxwell
equations, for investigating beam equilibrium and
stability properties. Such macroscopic fluid de-
scriptions have met with recent success in describ-
ing the propagation of space-charge-dominated
(low-emittance) beams in periodic-focusing trans-
port systems [46,49], and in describing high-
frequency collective oscillations in high-intensity
beams [48]. In a recent calculation [50], we make
use of the macroscopic warm-fluid model devel-
oped by Lund and Davidson [48] in the smooth-
focusing approximation to investigate the linear
stability properties of an intense charged particle
beam, allowing for equilibrium pressure anisotro-
py ðP0

? 6¼ P0
jj Þ. A particular focus of the analysis

[50] is application of the warm-fluid model to
investigate the anisotropy-driven ðP0

? > P0
jj Þ in-

stability observed in particle-in-cell simulations
and studied analytically using the Vlasov–Maxwell
equations [51,52]. Such anisotropies are well
known to develop naturally in accelerators, and
can provide the free energy to drive instabilities
and cause a deterioration in beam quality and
emittance.

To briefly summarize the assumptions and
macroscopic warm-fluid model applied in the
stability studies [50], the characteristic beam radius
is denoted by rb, and it is assumed that the particle
motion in the beam frame is nonrelativistic.
Transverse confinement of the beam particles is
provided by applied magnetic or electric focusing
fields, and in the smooth-focusing approximation

Fig. 3. Plots of (a) normalized growth rate Imo=obb versus

shifted axial wavenumber ðkz � kz0ÞVb=obb obtained from the

kinetic dispersion relation for the unstable branch with positive

real frequency. System parameters correspond to

#o2
pb=2g

2
bo

2
bb ¼ 0:98, vTez ¼ vTbz, Zb ¼ 1, A ¼ 133 (cesium ions),

ðgb � 1Þmbc
2 ¼ 4:5 GeV; rb=rw ¼ 0:5, and f ¼ 0:1. Curves

are shown for several values of normalized ion thermal spread

vTbz=Vb ranging from 0 to 0.01.

1Ref. [1] presents a general derivation of the macroscopic

fluid Maxwell equations from the Vlasov–Maxwell equations

on pp. 22–26. Several aspects of cold-fluid equilibrium and

stability properties of nonneutral beam-plasma systems are

described on pp. 240–276 of Ref. [1].
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we model the applied transverse focusing force on
a beam particle by Ffoc ¼ �gbmo2

bbðx#ex þ y#eyÞ,
where obb ¼ const: is the effective betatron fre-
quency for the transverse oscillations, and ðx; yÞ is
the transverse displacement from the beam axis.
Following Lund and Davidson [48], by taking
appropriate momentum moments of the nonlinear
Vlasov equation for the beam distribution func-
tion fbðx; p; tÞ in the six-dimensional phase space
ðx; pÞ, we obtain an interconnected chain of
macroscopic fluid equations advancing the particle
density nðx; tÞ, the average flow velocity
Vðx; tÞ ¼ Vzðx; tÞ#ez þ V?ðx; tÞ, the pressure tensor
Pðx; tÞ, the heat flow tensor Qðx; tÞ, etc. In the
present analysis, we adopt a model1 in which the
heat-flow contribution, proportional to
ð@=@xÞ 
Qðx; tÞ, is neglected in the dynamical
equation advancing the pressure tensor Pðx; tÞ,
thereby leading to a closed system of macroscopic
fluid-Maxwell equations describing beam equili-
brium and stability properties. In addition, the
pressure tensor Pðx; tÞ is assumed to be isotropic in
the plane perpendicular to the beam propagation
direction (the z-direction), i.e., Pðx; tÞ ¼
P?ðx; tÞð#ex #ex þ #ey#eyÞ þ Pjjðx; tÞ#ez #ez, where P?ðx; tÞ
and Pjjðx; tÞ are scalar pressures. Finally, under
axisymmetric equilibrium conditions with @=@y ¼
0; @=@t ¼ 0 and @=@z ¼ 0, the warm fluid-Maxwell
equations support a broad class of solutions for
the equilibrium density and pressure profiles n0ðrÞ,
P0
?ðrÞ, and P0

jj ðrÞ. In the analysis, we limit the
detailed investigations of stability behavior for
small-amplitude perturbations to the class of
so-called waterbag equilibria [14,16] in which
P0
?ðrÞ ¼ const:½n0ðrÞ
2 and P0

jj ðrÞ ¼ const:½n0ðrÞ
.
The stability analysis allows for general pressure
anisotropy, permitting a detailed investigation of
anisotropy-driven instabilities when P0

? > P0
jj .

The macroscopic warm-fluid equations are
linearized for small-amplitude perturbations, and
a single eigenvalue equation is derived for the
perturbed electrostatic potential dfðx; tÞ, allowing
for arbitrary anisotropy in the perpendicular and
parallel pressures, P0

?ðrÞ and P0
jj ðrÞ. Detailed

stability properties are calculated numerically [50]
for the case of extreme anisotropy with P0

jj ðrÞ ¼ 0
and P0

?ðrÞ 6¼ 0, assuming axisymmetric wave per-
turbations ð@=@y ¼ 0Þ of the form

dfðx; tÞ ¼ d #fðrÞ expðikzz � iotÞ, where kz is the
axial wavenumber, and Imo > 0 corresponds to
instability (temporal growth). For kz ¼ 0, the
analysis of the eigenvalue equation leads to a
discrete spectrum fong of stable oscillations with
Imon ¼ 0, where n is the radial mode number. On
the other hand, for sufficiently large values of kzrb,
where rb is the beam radius, the analysis of the
eigenvalue equation leads to an anisotropy-driven
instability ðImo > 0Þ provided the normalized
Debye length ðGD ¼ lD?=rbÞ is sufficiently large
and the normalized beam intensity ðsb ¼ #o2

pb=
2g2bo

2
bbÞ is sufficiently below the space-charge limit.

Here, #o2
pb � 4p #nbq2b=gbmb and l2D? � 2 #Tb?g2b=

4p #nbq2b, where #nb and #Tb? are the on-axis ðr ¼ 0Þ
values of density and perpendicular temperature.
Depending on system parameters, the growth rate
can be a substantial fraction of the focusing
frequency obb of the applied field [50].

Typical numerical results in the unstable case
are illustrated in Figs. 4 and 5. For the choice of
waterbag equilibrium considered here with
#Tbjj ¼ 0, the onset of instability occurs for
GD > G*

D ¼ 0:364, sb5s*b ¼ 0:750, and
n=n0 > n* =n0 ¼ 0:500, which are equivalent condi-
tions. Here, n=n0 � ð1� sbÞ

1=2 is a measure of the
effective tune depression, and n0 is undefined by
n0 � obb. Numerical solutions to the eigenvalue
equation [50] are shown in Fig. 4 for the choice of
system parameters GD ¼ 0:509 ðsb ¼ 0:55Þ. From
Fig. 4, for 04kzrb5k*

z rb ¼ 0:968, the eigenvalue
equation supports two real oscillatory solutions
with Imo ¼ 0. For kbrb > k *

z rb ¼ 0:968, however,
the two modes coalesce and have the same value of
Reðo� kzVbÞ, and complex conjugate values of
Imo (one mode is damped, and the other is
growing). The normalized growth rate Imo=n0 of
the unstable branch is plotted versus kzrb in
Fig. 4(a), and increases from Imo ¼ 0 at
kzrb ¼ k *

z rb ¼ 0:968, to Imo ’ 0:4n0 for
kzrb41. Consistent with Fig. 4(a), the correspond-
ing eigenfunction plots of Re½d #fðrÞ
 and Im½d #fðrÞ

versus r=rb are presented in Fig. 4(b) for kbrb ¼ 4,
corresponding to instability. For moderately low
values of kzrb, the eigenfunction for the unstable
mode has the distinctive n ¼ 1 mode structure
illustrated in Fig. 4(b) for kzrb ¼ 4. As kzrb
is increased, however, the real part of the
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eigenfunction, Re½d #fðrÞ
, changes continuously
from an n ¼ 1 to an 2 mode structure [50].

For completeness, shown in Fig. 5 are plots of
the normalized growth rate Imo=n0 versus kzrb
obtained numerically [50] for several values of GD

> G*
D and sb5s*b . Note from Fig. 5 that critical

value of kzrb for onset of instability increases as
GD is increased (sb is decreased), and that the
maximum normalized growth rate ðImoÞmax=n0
increases as GD is increased (sb is decreased). For
sufficiently large value of GD (large enough
transverse emittance), we also note from Fig. 5
that the instability has a finite bandwidth in kzrb,
whereas for smaller values of GD, the maximum
growth rate occurs for kzrb41. For #Tbjj 6¼ 0 (but
#Tbjj5 #Tb?), it is expected a numerical solution of
the complete eigenvalue equation [50] will always
give a finite instability bandwidth in kzrb.

As a general remark, application of a warm-
fluid model to describe the equilibrium and
stability properties of intense charged particle
beams appears to be a remarkably robust and
simple approach, both for the case of stable high-
frequency collective oscillations [48], as well as the
unstable case considered here, where the instability
is driven by gross macroscopic properties of the
beam equilibrium (pressure anisotropy) [50].

4. Halo particle production by collective mode

excitations in intense charged particle beams

It is important to develop improved theoretical
models of halo production and control for
charged-particle beam propagation in high-inten-
sity accelerators. Halo production mechanisms
[53–58] such as beam mismatch, nonlinearities
associated with nonuniform space charge, envel-
ope instabilities, and static field nonlinearities,
have met with varying degrees of success, using
test-particle and particle-core models, where ap-
propriate. In a recent analysis [58], we describe a
new mechanism for halo formation based on
collective oscillations excited self-consistently in
the charged particle beam. The calculation exam-
ines analytically and numerically the effects of
collective oscillations on the motion of a test
particle in the beam core. Even under ideal

Fig. 4. Plots of (a) Reðo� kzVbÞ=n0 and Imo=n0 versus kzrb,

and (b) Re½d #fðrÞ
 and Im½dfð#rÞ
 versus r=rb for kzrb ¼ 4,

obtained numerically from the warm-fluid eigenvalue equation

for Gd ¼ 0:509 (sb ¼ 0:55).

Fig. 5. Plots of Imo=n0 versus kzrb obtained numerically from

the warm-fluid eigenvalue equation for several values of

sb5s*b =0.750andGD>GD*=0.364:
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conditions, assuming a constant transverse focus-
ing force (smooth focusing approximation), and
axisymmetric (breathing-mode) perturbations
about a uniform-density, constant-radius Kap-
chinskij–Vladimirskij (KV) beam equilibrium, it is
found that collective mode excitations, in combi-
nation with the applied focusing force and the
equilibrium test fields, can eject particles from the
beam core to large radii [58].

Collective modes determined from the warm-
fluid model of Lund and Davidson [48] allow the
derivation of the equations of motion for test ions
in the beam interior and exterior regions. Test
particle orbits are calculated for collective oscilla-
tions with n ¼ 1 and 2 radial mode structure, and
an estimate is obtained for the range of initial
conditions for which particles will be expelled from
the beam interior. Resonances for meridional
particles are found to be unimportant, while a
class of particles with nonzero angular momentum
are found to participate in resonant behavior.
Once expelled from the beam, numerical solutions
of the orbit equations [58] indicate that Kolmo-
gorov–Arnold–Moser surfaces confine particles
within 1:5 times the beam radius for moderately
low mode amplitudes, but are successively desta-
bilized for higher amplitudes.

As a general remark, the collective oscillations,
causing time-dependent forces in the beam inter-
ior, can nonresonantly excite particles to higher
transverse energies. This enables edge particles,
from near the surface of a matched beam, to
escape when they would otherwise remain indefi-
nitely confined. The radial extent of expelled
particles is determined analytically and numeri-
cally, and can be a significant fraction of the beam
cross-section near the edge. A similar large effect is
observed for collective excitations about a warm-
fluid waterbag equilibrium [50] in which the beam
density profile decreases monotonically from the
beam axis ðr ¼ 0Þ to the beam edge ðr ¼ rbÞ.

5. Hamiltonian averaging techniques applied to

intense beam propagation through alternating-

gradient field configurations

As noted earlier, periodic focusing accelerators
and transport systems have a wide range of

practical applications. While the Kapchinskij–
Vladimirskij (KV) distribution [9,10] is a well-
known solution to the nonlinear Vlasov–Maxwell
equations for periodic focusing (quadrupole or
solenoidal) field configurations, it is nonetheless of
very limited practical interest. This is because the
(monoenergetic) KV distribution function has a
highly inverted (and unphysical) distribution in
phase space, and the corresponding density profile
is exactly uniform in the beam interior. It is
therefore important to develop a framework based
on the nonlinear Vlasov–Maxwell equations [1]
that is able to investigate the equilibrium and
stability properties of a far more general class of
periodically focused beam distribution functions.
In a recent calculation [26], Channell has devel-
oped a third-order Hamiltonian averaging techni-
que for investigating solutions to the nonlinear
Vlasov–Maxwell equations for systems subject to a
periodic external force. Following the Von Zeipel
procedure, the formalism [26] uses a canonical
transformation given by an expanded generating
function to transform away the rapidly oscillating
terms and end up with a Hamiltonian H that
depends only on ‘slow’ variables. In a recent
analysis [25], we have applied this averaging
technique to intense beam propagation through a
periodic focusing lattice. The asymptotic expan-
sion procedure is expected to be valid [25] for
sufficiently small phase advance (s9608, say).

To briefly summarize, the analysis considers a
high-intensity nonneutral beam of positive ions
(with charge qb, and rest mass mb) propagating in
the z-direction with characteristic average axial
momentum gbmbbbc, and directed kinetic energy
ðgb � 1Þmbc

2. The beam propagates through an
applied field that produces a transverse focusing
force, �½kxðsÞx#ex þ kyðsÞy#ey
, on the beam parti-
cles. Here, Vb ¼ bbc ¼ const: is the average axial
velocity, gb ¼ ð1� b2bÞ

�1=2 is the relative mass
factor, c is the speed of light in vacuo, s ¼ bbct is
the axial coordinate, the ion motion in the beam
frame is assumed to be nonrelativistic, and the
lattice functions, kxðsÞ and kyðsÞ, have axial
periodicity length S ¼ const: Both the cases of a
periodic focusing quadrupole field and a periodic
focusing solenoidal field are considered [25].
Furthermore, the analysis assumes negligible axial
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momentum spread, and the starting point is the
nonlinear Vlasov–Maxwell equations for the dis-
tribution function fbðx; y; x0; y0; sÞ and (normalized)
self-field potential cðx; y; sÞ ¼ qbfðx; y; sÞ=g3bmbb

2
b

c2 in the transverse phase space ðx; y;x0; y0Þ in the
laboratory frame. Here, for an alternating-gradi-
ent quadrupole field with kxðsÞ ¼ �kyðsÞ ¼ kqðsÞ,
the Hamiltonian for single-particle motion in the
laboratory frame is given (in dimensionless units)
by

#Hðx; y;x0; y0; sÞ ¼ 1
2ðx

02 þ y02Þ þ 1
2kqðsÞðx2 � y2Þ

þ cðx; y; sÞ ð5Þ

where kqðs þ SÞ ¼ kqðsÞ is the oscillatory lattice
function with

R S

0 ds kqðsÞ ¼ 0. The Hamiltonian #H
is formally assumed to be of order

e ¼
#kqS

2

ð2pÞ2
ð6Þ

a small dimensionless parameter ðe51Þ propor-
tional to the characteristic strength ð #kqÞ of the
focusing field.

The analysis [25] makes use of Channell’s third-
order Hamiltonian averaging technique [26] to
transform from laboratory-frame variables ðx; y;
x0; y0Þ to a new Hamiltonian Hð *X ; *Y ; *X

0
; *Y

0
; sÞ in

the ‘slow’ variables ð *X ; *Y ; *X
0
; *Y

0
Þ, correct to order

e3. The formalism employs a canonical transfor-
mation given by an expanded generating function
to transform away the rapidly oscillating terms.
This leads to a Hamiltonian in the transformed
variables of the form

Hð *X ; *Y ; *X
0
; *Y

0
; sÞ ¼ 1

2ð *X
02
þ *Y

02
Þ

þ 1
2kf ð *X

2
þ *Y

2
Þ þ cð *X ; *Y ; sÞ ð7Þ

where kf ¼ const: is defined by

kf ¼
1

S

Z S

0

ds½a2qðsÞ � haqi2


aqðsÞ ¼
Z s

0

ds kqðsÞ; haqi ¼
1

S

Z S

0

ds aqðsÞ: ð8Þ

Of course, an important byproduct of the gen-
erating function analysis is the determination of
the coordinate transformation [25] that relates the
laboratory-frame variables ðx; y;x0; y0Þ to the ‘slow’
variables ð *X ; *Y ; *X

0
; *Y

0
Þ. The major simplification

associated with transforming to the slow variables
ð *X ; *Y ; *X

0
; *Y

0
Þ is immediately evident from the

expression for Hð *X ; *Y ; *X
0
; *Y

0
; sÞ in Eq. (7). In

particular, the focusing coefficient kf is both
constant (independent of s) and isotropic in the
transverse plane. This should be contrasted with
the expression for the Hamiltonian #Hðx; y;x0; y0; sÞ
in Eq. (5) in the laboratory frame, where the
focusing coefficient kqðsÞ is a rapidly oscillating
functions of s. Following an analysis of the
nonlinear Vlasov–Maxwell equations for Fbð *X ; *Y ;
*X
0
; *Y

0
; sÞ and cð *X ; *Y ; sÞ in the transformed vari-

ables [25], we present several examples of axisym-
metric equilibrium solutions, i.e., distribution
functions F0

b ðH
0Þ with @=@s ¼ 0 and @=@Y ¼ 0,

corresponding to beam equilibria with circular
cross-section in the transformed variables [16]. Of
particular note is the class of distribution functions
that satisfy @F0

b ðH
0Þ=@H040, which can be

shown to be stable (Section 1). Finally, the inverse
coordinate transformation, *Xðx; y; x0; y0; sÞ,
*Yðx; y; x0; y0; sÞ, etc., has been exploited [25] to
determine properties of the periodically focused
distribution function fbðx; y; s0; y0; sÞ in the labora-
tory frame correct to order e3, consistent with the
class of constant-radius, circular cross-section
beam equilibria F0

b ðH
0Þ in the transformed vari-

ables. A wide range of important physical quan-
tities are determined, including the distribution
function fbðx; y;x0; y0; sÞ; statistical averages such
as the transverse mean-square beam dimensions,
hx2iðsÞ and hy2iðsÞ, and the unnormalized trans-
verse emittances, exðsÞ and eyðsÞ; and macroscopic
properties such as the number density of beam
particles, nbðx; y; sÞ ¼

R
dx0 dy0 fbðx; y;x0; y0; sÞ, the

self-field potential, cðx; y; sÞ, etc.
To summarize, this formalism [25] represents

a powerful framework for investigating the
equilibrium and stability properties of an intense
beam propagating through an alternating-gradient
quadrupole field. First, the analysis applies to
a broad class of distributions F0

b ðH
0Þ in the

transformed variables. Second, the determination
of (periodically focused) beam properties in
the laboratory frame is straightforward. Third,
the analysis applies to beams with arbitrary
space-charge intensity, consistent only with
requirement for radial confinement of the
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beam particles by the applied focusing field
ðkfb

2
bc

2 > #o2
pb=2g

2
bÞ. Finally, the formalism can

be extended in a straightforward manner to
the case of a periodic-focusing solenoidal field
BsolðxÞ ¼ BzðsÞ#ez � ð1=2ÞB0

zðsÞðx#ex þ y#eyÞ [25], and
to the case where weak nonlinear corrections to
the transverse focusing force are retained in the
analysis.

6. Conclusions

In this paper, we have summarized highlights
of selected heavy ion fusion research activities
carried out at the Princeton Plasma Physics
Laboratory since the 1997 Heidelberg symposium
on heavy ion fusion [7], with particular emphasis
on analytical and numerical simulation studies
of collective processes in intense beam propaga-
tion. The work summarized here has included
development of a three-dimensional stability
theorem for intense beam propagation based
on the nonlinear Vlasov–Maxwell equations
(Section 1); analytical and numerical studies of
the electron–ion two-stream instability in high-
intensity ion beams (Section 2); warm-fluid
investigations on collective instabilities driven
by pressure anisotropy in intense charged particle
beams (Section 3); studies of halo particle produc-
tion by collective mode excitations (Section 4);
and the development of Hamiltonian averaging
techniques for describing intense beam propaga-
tion through periodic focusing field configurations
(Section 5). Important theoretical advances have
been made in each of these areas, and a notable
characteristic of the work reported here is the
strong interplay between analytical studies and
numerical analysis and simulation, which is
essential to develop a predictive capability for
modeling present- and next-generation heavy ion
fusion experiments.
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