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Abstract

An intense nonneutral ion beam propagates in the z-direction through a periodic focusing quadrupole field with
transverse focusing force, Fi,.= — k,(S)I(x€, —y&,), on the beam ions. Here, the oscillatory lattice coefficient satisfies
k(S+ S) = ky(s), where S= const. is the axial periodicity length. The model employs the Viasov—Maxwell equations to
describe the nonlinear evolution of the distribution function f (x,y,x',y’,s) and the normalized self-field potentia ¢(x,y,s)
in the transverse laboratory-frame phase space (x,y, X', y'). Using a third-order Hamiltonian averaging technique, a canonical
transformation is employed with an expanded generating function which transforms away the rapidly oscillating terms, and
leads to a Hamiltonian in the ‘slow’ transformed variables ( X,Y, X’,Y’), with constant focusing coefficient Kiq = CONSL.

© 1999 Elsevier Science B.V. All rights reserved.
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Periodic focusing accelerators and transport sys-
tems [1,2] have a wide range of applications ranging
from basic scientific research, to applications such as
heavy ion fusion, spallation neutron sources, tritium
production, and nuclear waste treatment. Of particu-
lar importance, at high beam currents and charge
densities, are the combined effects of the applied
focusing field and the intense self fields produced by
the beam space charge and current on determining
detailed equilibrium, stability and transport proper-
ties [1]. Through analytical studies based on the
nonlinear Vlasov—Maxwell equations, and numerical
simulations using particle-in-cell models and nonlin-
ear perturbative simulation techniques, considerable
progress [3-11] has been made in developing an

improved understanding of the collective processes
and nonlinear beam dynamics characteristic of high-
intensity beam propagation in periodic focusing and
uniform focusing transport systems. However, de-
spite the extensive literature on equilibrium and sta-
bility properties, until the present paper, the
Kapchinskij—Vladimirskij (KV) beam equilibrium
[3-6], including its recent generalization to a rotating
beam in a periodic focusing solenoidal field [9], has
been the only known periodically-focused solution
to the nonlinear Vlasov—Maxwell equations for an
intense beam propagating through an alternating-
gradient quadrupole or solenoidal field configuration.
While allowing for high space-charge intensity, the
KV distribution is nonetheless of very limited practi-
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ca interest, particularly because the distribution
function has a highly-inverted (and unphysical) dis-
tribution in phase space, and the corresponding den-
sity profile is exactly uniform in the beam interior.

It is therefore important to develop a framework
based on the nonlinear Vlasov—Maxwell equations
[5,9] that is able to investigate the equilibrium and
stability properties of a far more general class of
periodically-focused beam distribution functions. In
a recent calculation [12], Channell has developed a
third-order Hamiltonian averaging technique for in-
vestigating solutions to the nonlinear Vlasov—
Maxwell equations for systems subject to a periodic
external force. The formalism [12] uses a canonical
transformation given by an expanded generating
function to transform away the rapidly oscillating
terms [12-14] and end up with a Hamiltonian 7
that depends only on ‘dow’ variables. The purpose
of the present analysis is to apply this averaging
technique to intense beam propagation through a
periodic focusing lattice [14]. The expansion proce-
dure is expected to be valid [14] for sufficiently
small phase advance (o < 60°, say).

We consider a thin (r, < S), intense ion beam
with characteristic radius r, and axial momentum
v,M, B,C propagating in the z-direction through a
periodic focusing quadrupole field with axial period-
icity length S Here, (y, — 1)m,c? is the directed
axial kinetic energy of the beam ions, y,=(1-
BZ)~1/? is the relativistic mass factor, V, = B, ¢ is
the average axial velocity, +Z,e and m, are theion
charge and rest mass, respectively, and c is the
speed of light in vacuo. The axial momentum spread
is assumed to be negligibly small, and the ion motion
in the beam frame is assumed to be nonrelativistic.
We introduce the scaled time variable s= B, ct, and
the (dimensionless) transverse velocities x' = dx/ds
and y = dy/ds. For a thin beam, the applied focus-
ing force on a beam particle is taken to be F;,, =
— k(S €, — y&,], where (x,y) is the transverse
displacement from the beam axis. The oscillating
lattice coefficient k,(s+ S) = k,(s) is defined by
Kkq(S) = Z,eB,(s)/y,m, B,C?, where S= const. is
the axial periodicity length, and [sdsk,(s)=0.
Within the context of these assumptions, the beam
dynamics in the transverse, laboratory-frame phase
space (x,y,X,Yy) is described self-consistently by
the nonlinear Vlasov—Maxwell equations for the dis-

tribution function f.(x,y,x,y,s) and the (dimen-
sionless) sdf-field potentia ¢ (x,y,s) = Z,ed(x,
y,8)/yim, BZc?, which can be expressed as [5,9]

] ] d ap\ 9
{ X =4y —— (Kq(S)X+—)—

as X ay ax ) ax
e f,=0 1
— | — + — | — =
Kq(S)y ay ay/ b ’ ( )
and
92 92 27K, vt )
a_x2+a_y2¢__ NbeY'b- (2)

Here, ¢(x,y,s) is the electrostatic potential, n,(x,
y,s) = [aX'dy f(x,y,X,Y,s) is the number den-
sity of the beam ions, and the constants, K, =
2N, Z2e*/y2m, BZc* and N, = [dxdydx'dyf,, are
the self-field perveance and the number of beam ions
per unit axial length, respectively.

A direct calculation of kinetic equilibrium and
stability properties [5—-11] from Egs. (1) and (2) is
considerably complicated by the fact that the lattice
coefficient «.(s) is an oscillatory function of s. In
the present analysis, we make use of Channel’s
third-order Hamiltonian averaging technique [12] to
transform from laboratory-frame variables (X,y,
X,y) to ‘dow’ variables (X,Y,X’,Y’), with a new
Hamiltonian #(X,Y,X",Y’,s). The formaism em-
ploys a canonica transformation given by an ex-
panded generating function to transform away the
rapidly oscillating terms [12-14]. The laboratory-
frame Hamiltonian is formally expressed as

H(X,y,X Y ,5) = eH( XY, XY ,9)
= e[3(xX7+¥?) + by (¢~ ¥?)
+y(xy,9)], (3)
where H is defined by Eq. (3), and € is a small

dimensionless parameter proportional to the strength
of the focusing field. We introduce a near-identity
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canonical transformation [12] where the expanded
generation function is defined by

S(x,y,X".Y',s)
=xX"+yY'+ Y €"S(x,Yy,X,Y,s). (4
n=1

The transformed Hamiltonian in the new variablesis
given by

Z (XY, X' Y's)
J
=H(x,y,x,y,s) + a—SS( Xy, XY's), (5

or equivalently,
XY, X"Y',s),

expressing #Z = L;_,€"

Y "7, (XY, X',Y',s)
n=1

— e[ 3(X7+Y°) + Irg(9) (X - ¥?)
*© J
+ i ( x,y,s)] + ng,le”a—ssn( X, ¥, X',Y',s) .
(6)

To determine the transformed Hamiltonian, note that
the variables (x,y,X,y’) occurring on the right-hand
sides of Egs. (5) and (6) are to be expressed in terms
of (XY, X',Y')s), i.e, x=x(X)Y,X'Y's), etc. The
coordinate transformation generated by Eq. (4) is
given by

S

K= =Xt eSOy, ()
S

X = aX—X’+ Ze —g(xyX' Y'.s), (8)

with similar expressions for Y= 9S/dY’ and y =
dS/dy. Egs. (7) and (8) are to be solved iteratively
for x(XY,X",Y',s), X(X)Y,X",Y' ), etc.

Analysis of Egs. (6)—(8) to determine the slowly-
varying Hamiltonian Z(X,Y, X",Y’,s) correct to or-
der € proceeds as follows. We solve Eq. (6) order
by order for #,. Because the generating function
S(x,y,X",Y',s) is arbitrary and unspecified, we use
this freedom to choose S, to cancel any rapidly
oscillating contributions to %7, so that the resulting
expression for .7, is slowly varying, order by order.

In Eg. (6), we expand x =X+ eX; + €%X, + €3X,
+ o, X=X+ ex;+eXx,+e3xX+ -, etc,
and ¢ (x,y,8) = ¢(X,Y,s) + e(x,9/9X +
y,9/9Y)(X,Y,s) + - - -. The coordinate transfor-
mation is also determined iteratively by solving Egs.
(7) and (8) for (X, Yn, X,y Vi)

The detailed solution to Egs. (6)—(8) will be
presented elsewhere [14] correct to order €. We
summarize here the definitions of the averages over
the lattice function «,(s) that occur in the analysis.
Assuming that [Fdsk,(s)=0, and that «.(s) has
odd half-period symmetry with k,(s—S/2) =
— kol —(s—S/2)], the key definitions [14] are

ag(s) = fostKq(s) L ag) = éfosds%(s) ,
Bo(9) = éf:ds[aq(s) ~(ag)],
<Bq>=éfosds,3q(s) -0

84(s) = ag(s)
(8, = éfosds[&zqz(s) ~ 2 ayy?],

- 2Kq(s) Bq( S) )

3
Kig = (8q) — (arg)” = gfosds[ ag(s) — <aq>2] :
(9)

Following the procedure outlined above, we solve
Egs. (6)—(8) order by order, correct to order €.
Without presenting algebraic details [14], the Slowly
varying Hamiltonian # = €7, + €%, + €37, is
found to be

(XY,

-<z
X
-{z
U3
[
N[~
pily
x
N
+
<
N
N—

+(XY,9), (10)

where we have set € = 1. Here, we have introduced
the additional (canonical) fiber transformation [15] to
shifted velocity coordinates defined by

X=X, Y=Y,

X' =X ={agdX, Y=Y+ {apY. (11)
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Similarly, we calculate X = X + €X; + €2X, + €3X3,
X =X+ eX, + €%x, + €3Xy, etc. Setting € = 1, this
gives [14]

(RY.% 59

= [1-By(9)] X+ 2([0$dsﬁq(s)) X',
Y(RF.% 5

~[ea) - [Es ). @)

and
X (XY, X'Y',s)
= [1+B4(9)] X'+ {—aq(s) +(ag)

+{ag)Bq(s) — aq(s)By(S)
_(fosds[éq(s) - <5q>])}>2

(o) 2 755955

y(X.Y,X'Y"s)
= [1-By(9)] V' + {aq(s) —(agy)
+{ag)Bq(8) — aq(s) By(S)

_(fosds[sq(s) - <5q>])}\7

{fomas {55 -53). oo

correct to order €. Here, the relative size of the
various terms in Eqs. (12) and (13) stand in the ratio

ay(s) (ay?
Bq(9)

CagdB(s) s ag(s)By(9), (fosdsﬁq(s)) ,

:Termsof order €,

:Termsof order €2,

(fosds[ 84(s) — (5q>]): Termsof order e®.  (14)

Because the focusing coefficient is constant («,
=congt.) and isotropic in the X-Y plane in the
transformed Hamiltonian defined in Eq. (10), thereis
enormous simplification in analyzing kinetic equilib-
rium and stability properties in the transformed vari-
ables (X,Y,X',Y"). The nonlinear Vlasov— Maxwell
equations for the distribution function Fb(X Y,
X'.Y',s) and sdf-field potentid ¢(X,Y,s) in the
‘slow’ variables are given by [14]

~ d 0
= — Kqu+ a—)zlll a—)Z,

~ d d
_(Kqu_Fa_Vw)a_V’}Fb:O, (15)

92 92
— t+ —== =
(ax2 aYz)w

where ¢, = const. is defined in Eqg. (9). It should be
emphasized that the nonlinear Vlasov—Maxwell Egs.
(15) and (16) in the slow variables (X,Y,X',Y"),
when supplemented by the coordinate transformation
in Egs. (12) and (13), are fully equivalent to the
nonlinear Vlasov—Maxwell Egs. (1) and (2) in the
laboratory-frame variables (x,y,x,y), correct to
order €. Furthermore, because the coordinate trans-
formation is canonical, the laboratory-frame distribu-
tion function fy(x,y,x,y’,s) is related to the trans-
formed distribution function Fb(XY X Y’ s) by
fo(X,y, X', y,s) dxdydx'dy’ = b(X Y, X", Y',s)
dXdydx'dY’, and the Jacobian of the transformation
is equa to unity, J(x,y,X,y)/d(XY, X" Y') =1,
which can aso be verified by direct calcular
tion[14] from Egs. (12) and (13) correct to order €
Therefore, once the distribution function Fb(x
Y,X',Y',s) in the transformed variables is calcul ated
from Egs. (18) and (19), the laboratory-frame distri-
bution function
fo(X,y,X,Yy,9) is given by

(16)

~

fo( X,¥.X,Y,5) = Fy( XY, X', Y",5). (17)

Here, X(x,y,X,Y,9), Y(x,y,X,Y,s), €ic., denotes
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the inverse coordinate transformation [14] to Egs.
(12) and (13) given by

X(X,y,X,Y,s)

= [1+By(9)] x— Z(fOSdSBq(S)) X,
Y(X,Y.X,Y,S)
=[1—Bq(s)]y+z(/osdsﬁq(s))% (18)

and

)Z’(x,y,x/,)/,s)

[1 'Bq(s)] _<aq>]

Y'(%Y,X,Y,S)

=[1+Bq(s)]y—{[aq(s)—
x[1- By(9)] —(f:ds[éq(s) —<6q>])}y
o)y o). oo

ay ax

(ay]

correct to order €2. In obtaining Egs. (18) and (19),
we have made use of the fact that the self-field
contributions in Eq. (13) are proportional to
(/§dsB,(s)), which is of order €® [see Eq. (14)].
Therefore, to leading order, we approximate
(0/9X)(Xa/aX — Yo/ oY)y (X,Y,s) by
(9/9x)(xd/ax —yd/dy)(X,y,Ss), €c., in obtaining
Egs. (18) and (19).

Because of the simple form of the Vlasov—
Maxwell Egs. (15) and (16), with constant focusing
coefficient «;, = const., a wide range of literature
developed for the constant focusing case can be
applied virtualy intact in the transformed variables.
Furthermore, the present analysis makes accessible
for the first time numerous examples (in addition to
the KV beam equilibrium) of nonlinear solutions to
the Vlasov—Maxwell equations which are periodi-

cally-focused in the laboratory frame. Detailed ex-
amples, including the back-transformation of beam
properties to the laboratory frame, will be presented
elsewhere [14], and we summarize here several key
results. For present purposes, it is assumed for sim-
plicity that the conducting wall is infinitely far re-
moved from the beam (r, <, — ).

Because k;, = const., Egs. (15) and (16) support a
wide range of axisymmetric equilibrium solutions
[5,9]. Here, we introduce cylindrical polar coordi-
nateﬁ(R ©) with X = Rcosf and Y = Rsin®, where
R=(X2+ Y22, Setting 9/ds= 0= 3/30 in Egs.
(15) and (16), it is readily shown that any distribu-
tion function of the form

FO(X.Y, X' Y') =F(7°), (20)

where 7% = 3(X'? + Y'%) + 3k R2 + ¢ %(R) isthe
single-particle Hamiltonian, is an exact nonrotating
equilibrium solution to the nonlinear Vlasov Eqg.
(15). Here, ¢°(R) is determined self-consistently
from
RO 27 [y Fo(#°
= =Rz U"(R) = / (7°),
(21)

where n%(R) = [dX'dY'F2(#°) is the equilibrium
density profile in the transformed variables. Note
that Eq. (21) is generaly a nonlinear_differential
equation for the self-field potential °(R).

There is enormous latitude [5,9] in specifying the
functional form of F2(#°) in the transformed vari-
ables. Once the functional form of F2(.#°) is speci-
fied, however, and y°(R) is calculated self-con-
sistently from Eq. (21), other equilibrium properties
in the transformed variables can be readily deter-
mined, such as the density profile, the transverse
temperature profile, etc. One important example is
the thermal equilibrium distribution function [5,8]

YpM, BEC
27T-|,:l b

FO(7°) = ﬁb(
YoMy BEC?
Xexpy — ——=—

TJ_ b
where A, and T, , are positive constants with di-
mensions of density and temperature (energy units),

%0} , (22)
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respectively. Taking the zero of potential to be
$°(R=0)=0, Eq. (22) readily glV% the density
profile nd(R) = Ayexp{ — (y,m, B2c?/2T | ) k;q R?
+ 2¢:%(R)]}. Solving Eq. (21) numerically for ¢ *%(R)
then gives a bell-shaped density profile for ni( R),

which assumes a maximum value (fi,) at R=0and
decreases monotonically to zero as R — oo provided
the applied focusing field is sufficiently strong that
Kfqﬁbc > (1/2yp)ap, [14]. Here, @} =

47, Z2€*/y,m, is the on-axis plasma frequency-
sguared.

Eq. (22) is an important example of an equilib-
rium distribution function that is known to be stable.
Making use of global conservation constraints satis-
fied by the nonlinear Vlasov—Maxwell Egs. (15) and
(16) in the transformed variables, it can be shown
that

s FO(7°) <0 (23)
is a sufficient condition for stability [11]. Whenever
Eq. (23) is satisfied, the system is stable, and pertur-
bations, SF,(X,Y,X'.Y’",s) and &y(X,Y,s), about
equilibrium do not amplify. The stability theorem in
Eqg. (23) is a very powerful result, and is valid
nonlinearly (finite-amplitude perturbations) as well
as for small-amplitude perturbations.

Statistical averages are aso readily calculated for
the general class of equilibrium distribution func-
tions in Eq. (20). Here, the statistical average of a
phase function y(X,Y,X',Y’,s) in the transformed
vanabl& is defined in the usua manner by { x)o =

Ny Y dXdYdX'dY'y FO(# °), where N, =
/ dXdeX dY'F2(#°) is the number of particles per
unit axial length. For example, because #° is an
even function of X, Y X' and Y, it follows trivialy
that <X>o—0 <Y>o, <X Yo=0= <Y Yo, and
(XX Yo=0= 2% Yo. Furthermore, the mean-
square beam radiusis Ry, = ( X? 4+ Y %) = 9{ X?)o
— 3(Y2),. Finally, for the general class of beam
equilibria F2(.#°), the global radial force balance
equation can be expressed as [10,14].

LI P il 24
Kiq 2R§o b0 — 4Rg0 ) ( )
where €2 =4( X2+ Y2)o{ X'+ Y'?), is the total

unnormalized transverse emittance-squared.

Properties of the periodically-focused beam dis-
tribution function f(x,y,Xx,y,s) in the laboratory
frame are readily calculated for the entire class of
beam equilibria F2(.#°) by making use of Eq. (17)
and the coordinate transformations in Egs. (18) and
(19). From Eq. (17) it follows that f(x,y,X,Y,s) =
Fo(#°), where #° is defined by

+ 3K Iiz( X, ¥,X,Y,9)

+Po(R(X,Y.X,Y.9)). (25)

Here, R2(x,y,X,Y,s) = X2(x,y,X,Y,s) + Y2 X
(x,y,X,y,s). Because the s-dependent coeffi-
cients of a,(s), B4(s), etc., have axia periodicity
length S= const., the laboratory-frame distribution
function also satisfies f(x,y,x,y,s+ S =
fo(X, Yy, X,Y,9).
A wide range of beam properties in the laboratory

frame can be caculated from Eg. (25) and
fo(X,y,X,Y,s) = F)(#°). Because Z7° is an even
function of X(x,y,X,y,s), X'(xy,X,y,s), etc.,
there is enormous simplification in calculating statis-
tical averages and macroscopic moments. For exam-
ple, defining the statistical average of a phase func-
tion x(x,y,Xx,Y,s) in the laboratory frame by { x)
= N, Yfdxdydx'dy’x f,(x,y,X,y,s), it is readily
shown that (x)=0=<y) and {(X)=0=<Yy)
correct to order €3, which corresponds to a beam
equilibrium that remains centered in the laboratory
frame. Proceeding to higher-order moments, and
making use of Eqg. (14), it can be shown that

(x2)(s) =

(Y2)(8) = [1+ By(9)] (V2D =
and that (x?)(s) =[1— B(NZ(X'*)o+ [ag(s) —
CadP(X2)o, (y?)(9) =[1+ B0 +
[ag(s) — Capl? <Y2>o, (xx')? = [ay(s) —
<a >]2<X2>o, <W'> = [aq(s) — (a, >]2<Y2>o,
correct to order €3. Here, ( X2y = (Y?2 >0—Rt2,0/2

and as expected, the circular cross-section beam
equilibrium F2(#°), which has constant mean-

[1- By(9)] (X0 = 3a%(s),

20%(s),  (26)
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square radius R, = ( X2 + Y2), in the transformed
variables, when mapped back to the laboratory frame
has a pulsating elliptical cross-section with
(x2)/a%(s) + (y?)/b?(s)=1. A further striking
result is evident from the present analysis. Even
though the kinetic energy components, %(x*)(s)
and 1(y?)(s), are oscillatory functions of s, the
transverse emittances are conserved quantities (inde-
pendent of s). This follows because

eZ(s) =4[ (x(5)(X*)(5) = O Y( )]
= 4 X2)o{ X'?)o = €2, = congt.,
€2(3) = 4[<y? () y®)(s) — (yy Y(9)]
= KY2)o(Y"?)o = €2, = const., (27)

correct to order €>.

Finally, for specified equilibrium distribution in
the transformed variables, various macroscopic prop-
erties in the laboratory frame can also be calculated
from Eq. (25) and f (x,y,X,Y,s)=F2(#°). For
example, if the equilibrium density profile in the
transformed variables is determined to be nf( R/Ryo)
(here we scale R by R, without loss of generality),
then the density profile in the laboratory frame,

n,(x,y,s) = [dXdy f (x,y,X,Y,s), is found to be
[14]
Ny(X,Y,s) = ;”g[ I:Nz( X’Y:S)/Rbo] .

1- qu(s)

(28)

correct to order €%, where R2(x,y,s)/RZ,
= x2/a%(s) + y?/b?(9).

Eq. (26)—(28) are important results for the general
class of equilibrium distribution functions F2(.Z°).
Not only are the transverse emittances conserved, the
constant-density contours in the laboratory frame
correspond to elliptical surfaces with x2/a%(s) +
y2/b?(s) = const. In Eq. (28), note that the factor
[1—BZ(s)] " =1 correct to order €* [Eq. (14)].

Important in the present analysis is the definition
and size of the dimensionless small parameter e.
This is best determined by examination of the rela-
tive size of the correction terms in Egs. (12) and
(13) to the identity transformation (X,y,X,y)=
(XY, X'Y'). As an example, we take «k(s)=

K,Sin(2ms/S), where k, = const. In this case, k¢, =
(3/2))\2/82 follows from Eq. (9), where A =
K 82/277 Careful examination of the correctlon
terms shows that the key dimensionless parameter is
€= \q/2m < 1[14]. In addition, the vacuum phase
advance o, over one lattice period S estimated
from Eq. (24) and o, =lim,__, ¢[€,/5ds/2RE,], is
given by oy, = /ii;q S=(3/2)"?,. Therefore, o,
< /3= 60" correspondsto A, < (2/3)"/% and e =
Aq/2m < 0.13. This is the reason for the conjecture
that o, < /3 should be adequate to assure validity
of the Hamiltonian averaging technique developed
here. A more detailed discussion of the range of
validity of the asymptotic expansion procedure used
here is presented in Ref. [14]. In this regard, it is
important to recognize that the expansion parameter
e is proportional to «(s), the strength of the applied
focusing field. Hence, the analysis is restricted to
moderate values of phase advance, which we esti-
mate to be o, < /3. Infutureresearch, it is planned
to carry out a detailed assessment of the range of
validity of the Hamiltonian averaging technique de-
veloped here by systematic comparison with numeri-
cal simulations for various choices of beam distribu-
tion function F2(.Z°).

Referring to Eq. (9), it is evident that all of the
oscillatory coefficients a,(s), B,(s) and §,(s) are
directly related to the integral over the lattice func-
tion k,(s) defined by a,(s)= [gdsk,(s). In turn,
the quantlty a,(s) can be relamed to the familiar
Courant— Snyder amplitude function B(s) [1,2] de-
fined by B(s) w?(s), where w(s) solves w’ +
k(W= 1/w®. Expressing B(s) = B1 + f (9],
where B = const. and |f,l <1 is assumed for smaII
k4(s), some straightforward agebra [1] shows that
the Courant—Snyder amplitude function A(s) and
the integral a,(s) = [;dsk,(s) defined in Eq. (9) are
related to Ieadmg order by the simple expression
(d/ds)B(s) = —ZBa (s).

To summarize, the preeent formalism represents a
powerful framework for investigating the equilib-
rium and stability properties of an intense beam
propagating through an alternating-gradient
quadrupole field. First, the analysis applies to a
broad class of distributions F2(#°) in the trans-
formed variables. Second, the determination of (peri-
odically-focused) beam properties in the laboratory
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frame is straightforward. Third, the analysis applies
to beams with arbitrary space-charge intensity, con-
sistent only with requirement for radial confinement
of the beam particles by the applied focusing field
(kiq BSC® > @5, /2y%). Finally, the formalism can
be extended in a straightforward manner to the case
of a periodic-focusing solenoidal field Bg,(x) =
B,(s)&, — 3B(s)(x€, +yé)) [14], and to the case
where weak nonlinear corrections to the transverse
focusing force are retained in the analysis.
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