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Abstract

The Viasov-Maxwell equations are used to investigate properties of the electron-ion two-stream instability for a contin-
uous, high-intensity ion beam propagating in the z-direction with directed axial velocity ¥ = Byc through a background
population of (stationary) electrons. The analysis is carried out for arbitrary beam intensity, consistent with transverse
confinement of the beam particles, and arbitrary fractional charge neutralization by the background electrons, Detailed
stability properties are calculated over a wide range of system parameters for dipole perturbations with azimuthal mode
number £ = 1. The instability growth rate Im w is found to increase with increasing normalized beam intensity ((bf,b/w‘;,),
increasing fractional charge neutralization (f = f./Zsfv), and decreasing proximity of the conducting wall (ry/rv). ©

1999 Elsevier Science B.V.
PACS: 29.27.Bd; 41.75.—1i; 41.85.—p

Periodic focusing accelerators and transport sys-
tems {1-3] have a wide range of applications rang-
ing from basic scientific research, to applications such
as tritium production, spallation neutron sources, and
heavy ion fusion [4,5]. At the high beam currents and
charge densities of practical interest, it is increasingly
important to develop an improved theoretical under-
standing of the influence of the intense self-fields pro—
duced by the beam space charge and current on de-
tailed equilibrium, stability and transport properties.
For a one-component high-intensity beam, consider-
able progress has been made in describing the self-
consistent evolution of the beam distribution function
fo(x,p,t) and the self-generated electric and mag-
netic fields E°(x,?) and B*(x,t) in Kinetic analy-

A _INT hacoad an the Ulaono Ao all &
sEs g_ l,U"’lUj DAaSCa On uil Vi1asOv—iviaXwiu uu,uauuuo

In many practical accelerator applications, however,
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For example, a background population of electrons can
result locally when an H™ beam is injected through
a stripper foil into a proton storage ring, or when
energetic ions strike the chamber wall. When a sec-
ond charge component is present, it has been recog-
nized for many years, both in theoretical studies and
in experimental observations {11-21], that the rela-
tive streaming motion of the high-intensity beam par-
ticles through the background charge species provides
the free energy to drive the classical two-stream in-
stability [22,23], appropriately modified to include
the effects of dc space charge, relativistic kinematics,
presence of a conducting wall, ete. For electrons in-
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age Ring, the Accelerator for Production of Tritium
{APT), or the Spallation Neutron Source {SNS), this
instability is usually referred to as the electron-proton
{e-p) instability [15-17], although a similar insta-
bility also exists for other ion species, including (for
example) electron—-ion interactions in electron stor-
age rings [ 18-21], or in high-intensity ion beams for
heavy ion fusion {5].

Theoretical treatments of the electron-ion two-
stream instability are traditionally based on mod-
els (see, for example, Refs. [11-13,15-17]) that
analyze the center-of-mass motion of the ion and
electron charge components. Such models, while
treating accurately several bulk features of the insta-
bility, are limited in scope and difficult to generalize
to include the dependence of stability behavior on
the detailed phase-space properties of the distribu-
tion functions. Therefore, in the present analysis,
we develop and apply a theoretical formalism based
on the Viasov-Maxwell equations {1,24] that de-
scribe the self-consistent interaction of the ion and
electron distribution functions with the applied field
and the self-generated electric and magnetic fields.
Furthermore, in integrating the linearized Vlasov-
Maxwell equations, we make use of the method of
characteristics [23,24] to integrate along the parti-
cle trajectories in the equilibrium field configuration.
Finally, apart from requiring transverse confinement
of the beam particles by the focusing field, no a pri-
ori restriction is made on ion beam intensity. The
analysis can be applied to ion beams ranging from
the emittance-dominated, moderate-intensity proton
beams in present and next-generation proton linacs
and storage rings, to the low-emittance, space-charge-
dominated ion beams in heavy ion fusion.

The present analysis considers a high-intensity ion
beam with distribution function f,(x, p, 1), and char-
acteristic radius r, and axial momentum yymyByc
propagating in the z-direction through a background
population of electrons with distribution function
fe{x, p,t). The ions have high directed axial veloc-
ity b = Bpe in the z-direction, and the background
electrons are assumed to be nonrelativistic and sta-
tionary with [ d*p p, fo ~ 0 in the laboratory frame.
In the smooth-beam approximation, the ion beam is
assumed to be continuous in the z-direction, and the
applied transverse focusing force on a beam ion is
modeled by

F?oc = “'}’bmb&)%.bx_L p ( 1)

where x; = x&, + yé, is the transverse displacement,
('yo — 1)myc? is the characteristic ion kinetic energy,
my, is the ion rest mass, ¢ is the speed of light in vacuo,
and w%b = const is the effective betatron frequency
for transverse ion motion in the applied focusing field.
For the background electrons, assuming that the ion
density exceeds the background electron density, the
space-charge force on an electron, Fi = ¢V ¢, pro-
vides transverse confinement of the background elec-
trons by the electrostatic potential ¢(x, t), It is fur-
ther assumed that the ion motion in the beam frame
is nonrelativistic, and that the transverse momentum
components of the beam ions and the characteristic
spread in axial momentum are small compared with
the directed axial momentum, ie., |p.|, |pyl, [8p.] <
oy Pyc. The space-charge intensity in the present
analysis is allowed to be arbitrarily large, subject only
to transverse confinement of the beam ions by the fo-
cusing force in Eq. (1).

In addition, the present analysis is carried out in the
electrostatic approximation, where the self-generated
electric field produced by space-charge effects is
E'(x,1) = —V¢(x.1), and the electrostatic po-
tential ¢(x,1) is determined self-consistently from
Poisson’s equation

V3¢ = —dme(Zony — o). (2)

Here, mp(x,1) = [&p fo(x,p, 1) and ne(x,1) =
J d3p fe(x, p,t) are the ion and electron number den-
sities, respectively. To determine the self-generated
magnetic field B*(x,1) = VA (x,t) x &, pro-
duced by the axial ion current, it is assumed that
the axial velocity profile V,p(x,1) =~ Byc is ap-
proximately uniform over the beam cross section. In
this case, in the magnetostatic approximation, the z-
component of vector potential A, (x,t) is determined
self-consistently from

V2A, = —4a Zve Bony, (3)

where use is made of the assumption that the electrons
carty zero axial current in the laboratory frame.
Finally, under equilibrium conditions (3/dt = 0),
the present analysis assumes that ion and electron
properties are spatially uniform in the z-direction with
d/dz = 0. However, the stability analysis assumes
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small-amplitude perturbations with z- and #-variations
proportional to exp(ik,z — iwt), where k, = 2n/L
is the axial wavenumber, and @ is the (complex) os-
cillation frequency, with Imw > 0 corresponding to
instability. Here, n is an integer, L is the fundamen-
tal axial periodicity length of perturbed quantities in
straight (e.g., linac) geometry, and L = 2R for the
case of a storage ring with (large) radius R > ry. For
present purposes, the stability analysis assumes per-
turbations with sufficiently long axial wavelength and
high frequency that k2r2 < 1, |@/k, — Byc| > v,
and |@/k,| > vre;. Here, vry; = (2Th; /yomy) '/ and
Ure; = (2Te; /me)'/? are the characteristic axial ther-
mal speeds of the beam ions and the background elec-
trons, respectively. These inequalities lead to several
simplifications. For example, because k%rﬁ & 1, the
three-dimensional Laplacian V2 occurring in Egs. (2)
and (3) can be approximated by V4 = d4%/dx? +
3*/ay*. Furthermore, the perturbed axial forces, e.g.,
8F, = ¢(a3/3z)6¢@, and 8F, = —Zpe(d/d2)8d8,,
are treated as negligibly small. The subsequent anal-
ysis therefore neglects the effects of Landau damping
(by resonant particles) due to the axial momentum
spread [23].

We make use of the assumptions summarized
above to simplify the theoretical model based on
the Viasov—Maxwell equations [25]. First, we intro-
duce the reduced distribution functions defined by
Fb(x°pj_’t) = fdpz fb(xap’t)a and Fe(x!p_L’t) =
[dp; fe(x,p,1). Because [dp,p,fe ~ O for the
electrons, and axial forces are treated as negligibly
small, the nonlinear Vlasov equation for F.(x,p, 1)
1s given (nonrelativistically) by

d p, @8 d
e T e v ¢ e S Fu{X,p )\t
{8t+me afoHe +9) ap_L} e(%.p1.0)

=0, (4)

where —e is the electron charge, and V = 2,d/3x +
&,d/dy is the perpendicular gradient. The ions, how-
ever, have large directed axial velocity W, ~ Byc.
Therefore, we approximate v - 3/dx ~ (p, /yomp) *
3/dx 1 +Wa/dz, and the perpendicular self-field force
on an ion is approximated by Fy; ~ Zye[~V ¢ +
Bré, x (V1 A, x &)], where ¢ and A, are deter-
mined self-consistently from Eqs. (2) and (3). The
Vlasov equation for F,(x, p, , t) then becomes

+W%

INYRI T
at 0z yemy 9X]

a
- (')/b'nbw%bzxj_ +Zbevil,b) . W}Fb(xx p_Ls t)
L

=0. (5)

Here, +Zye is the ion charge, and ¢ (x,1) is the
combined potential defined by # (x,1) = ¢(x,1) —
BuA(x,t). The self-field potentials ¢(x,t), and
¥ (x,t) solve

62 32 2
(5 i o= —sme(f o= [ ).

(6)

at 42 Zo [ 2
(Fa*am)v- ‘4“(3‘%/“ P[0 r)
(7)

where we have approximated V2 ~ V3% = 42/ax? +
3%/ ay?,

Egs. (4)-(7) constitute a complete description of
the collective interaction of the beam ions with the
background electrons based on the Vlasov-Maxwell
equations. In the subsequent analysis, we further as-
sume that the beam propagates axially through a per-
fectly conducting cylindrical pipe with radius r =
rw. Enforcing [E3]l e, = [Eil=r, = [Bilrer,
0 readily gives ¢(r = ry,0,2,1) = 0, and ¢ (r =
rw,8.2,t) = 0. Here, the constant values of the po-
tentials at r = ry, have been taken equal to zero.

Under quasisteady equilibrium conditions with
3/t = 0, we assume axisymmetric beam propaga-
tion (3/80 = 0) and negligible variation with axial
coordinate (4/9z = 0). It is readily shown from
Egs. (4)-(7) that the equilibrium distribution func-
tions (8/dt = 0) for the beam ions and background
electrons are of the general form FY = FQ(Hp)
and F? = FO(H,.), where H}, and H . are the
single-particle Hamiltonians defined by

it

Hip = 2,1 o2 Z 0 g0
1b 2ybmbp_l_+27bmbwﬂbr + Zuely (r) —¢71,
1 "
Hie= Zmepﬁ_ —e[¢°(r) - ¢°1. (8)

Here, for 3/80 = 0 = 3/dz, H,p and H . are exact
single-particle constants of the motion, and the con-
stants /° = ¢%(r = 0) and #° = ¢%(r = 0) are the
on-axis (r = 0) values of ¢/°(r) and ¢°(r).
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There is wide latitude in specifying the functional
forms of the equilibrium distribution functions [10].
Once FO(Hp) and FO(H ) are specified, however,
the equilibrium self-field potentials and density pro-
files can be calculated self-consistently from Egs. (6)
and (7) with /3@ = 0 = 3/dz. For example, for
the thermal equilibrium distributions F}(Hy,) =
Bjexp(—H_y;/T);), where j = b,e, and 8; and Ty ;
are positive constants, it can be shown that the den-
sity profiles, n9(r) = [ d*p FY(Hy;), for the ions
and electrons are bell-shaped and vary continuously
with radial coordinate r [25]. On the other hand, for
monoenergetic ions and electrons, with distribution
functions [24-26]

Fo(Huy) = 5 ""mba(Hlb ~ 1),

FO(HL) = E;r”i”;a(me ~ 7150, 9)

it is found that the density profiles n; O(r), j =b,e, cor-
respond to overlapping step-funcuon profiles. Here, fip
and A, = fZ,Ay, are positive constants corresponding
to the ion and electron densities, f = const is the frac-
tional charge neutralization, and T,y and T, . are con-
stants corresponding to the on-axis (r = 0) values of
the transverse ion and electron temperatures, respec-
tively. Without presenting details [ 25], some algebraic
manipulation of Egs. (6)-(9) gives the step-function
density profiles n?(r) = fi; = const, for 0 < r < ry,
and nd(r) = 0 for ry < r < ry, and j = b, e. Here,
the beam radius 7y is related to other equilibrium pa-
rameters by $2rf = 28y /yemy, and $2r2 = 281 o /me,
where for monoenergetic ions and electrons, the (de-
pressed) betatron frequencies $, and P, are defined by

2
7 =w%b - i(;— - f) pb—const,

A2 _ 1 Yo
ZZme

f)a)pb = const, (10)

where zbf,b = 4whnZ2e*/yymy is the ion plasma
frequency-squared. The inequalities, # > 0 and
1‘13 > 0, are required for existence of the equilib-
rium. Therefore, we obtain the inequalities (@%b/
w‘};b)(l —Yif) < 292 and f < 1, as restrictions on
beam intensity and fractional charge neutralization
for transverse confinement of the ions and electrons.

For small-amplitude perturbations about general
equilibrium distributions, FO(H ) and FO(H ),
and corresponding self-field potentials, ¥°(r) and
¢%(r), a stability analysis proceeds by lineariz-
ing Egs. (4)-(7). Perturbed quantities are ex-
pressed as Sy (x,1) = 8 (x1)exp(ik,z — iwt),
SFp(x,py,t) = 8F(x 1, p, ) exp(ik,z — iwt), etc.,
where x; = (x,y), and Imw > O is assumed, cor-
responding to instability (temporal growth). The
linearized Vlasov equations are formally integrated
by using the method of characteristics [24,25] to in-
tegrate along the unperturbed trajectories, x’, (¢') and
P’ (1'), in the equilibrium field configuration. Some
straightforward algebra that makes use of Egs. (4)-
(7) gives

J "
8Fc(x1.py) = —emff(fﬁe){&f’(xl)
0
+iw/d73q3(x1)exp(—-iw7)}, (11)
SFy(x1,py) = Zbealj FbO(HJ_b){&/;(xJ_)
1b

0
+i(@— kW) /df&/}(xg_)

% expl —i(e — kz%)r]}, (12)

wbere the potential amplitudes, 6:)3( x1) and
8(x,), are related to 8F.(x),p,) and 8F,(x,,

pi) by

a2 a"- 5 2 8F
ax2 b = —dmre ‘Zb d“p 8k
—~/d2p8Fe , (13)
N\ .. B!
A T = —4qe| 2

(é’xz + ayz)&ll e _Yg Zy | d*p 8F,

- / d&*p 8F.|. (14)

In Egs. (11) and (12), 7 = ¢’ -t is the displaced time
variable, and the ‘primed’ orbits, x’, (¢') and p/, ('),
in the equilibrium field configuration are taken to pass
through the phase-space point (x;,p, ) at time ¢’ =
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t [24,25]. For example, for the ion orbit x’, (¢') oc-
curring in the eigenfunction S (x' ) in Eg. (12}, the
transverse displacement x J_( t') solves

2
d t!2

0

—x' (') + {wﬁw 2o >}xm) 0,

(15)

Yorr' dr'

subject to the boundary conditions x, (t' =1) = x
and [dx' (¢')/dt'Yy= = p) /vomp. Here, r'(t') =
[x2(¢') + y(¢')]'/2. The electron orbit x’, (¢') oc-
curring in the eigenfunction 8¢(x ') in Eq. (11),
solves an equation identical in form to Eq. (15)
provided we make the replacements Zye — —e,
$O(r') — ¢°(r'), yomy — me, and &% — 0 in
Eq. (15).

The kinetic eigenvalue equations (11)-(14) have a
wide range of applicability, and can be used to deter-
mine the complex oscillation frequency w and detailed
stability properties for a wide range of system param-
eters and choices of equilibrium distribution functions
FO(Hy) and FO(H ) [25]. The principal challenge
in analyzing Egs. (11)-(14) is two-fold. First, de-
pending on the equilibrium profiles, the transverse or-
bits x’, (¢') are often difficult to calculate in closed
analytical form. Second, once the orbits in the equilib-
rium fields are determined, the integrations over ¢ in
Egs. (11) and (12) are challenging because the orbits
occur explicitly in the arguments of the (yet unknown)
eigenfunction amplitudes &Jb(x ‘) and S (x .

For present purposes, we specialize to the choice
of monoenergetic ion and electron distributions in
Eq. (9), and the corresponding step-function equi-
librium density profiles with n; O(r) = 1; , = const, for
0<r<ryandnd(r) =0, for ry < r < I'. In this
case, $°(r) — ¢° and ¢°(r) — ¢° are proportional
to ¢ in the beam interior (0 < r < rp), and the ion
orbit equation (15) can be integrated exactly to give

x| (') = x 1 cos(PpT) + ! Y Py sin(Bpr)  (16)
for0 < ¥ (') < ry. Here, 7 = t' — t and 9y is the (de-
pressed) betatron frequency defined in Eq. (10). The
electron orbit x’, (¢') is identical in form to Eq. (16),
provided we make the replacements yym, — m. and
P — P in Eq. (16). A careful examination of the
eigenvalue equations {11)-(14) for the choice of
equilibrium distributions in Eq. (9) [25] shows that

Eqgs. (11)-(14) support a class of exact solutions
in_which the perturbed potentials have the forms
511/(xl) Bz/lg(r) exp(if8) = ifyrt exp(if8) and
8P(x1) = bPe(r) exp(ilb) = ort exp(i¢d) in the
beam interior (0 < r < ry). Here, ¢, and ¢/ are
constant amplitudes, £ is the azimuthal mode number,
and we have introduced cylindrical polar coordinates
(r,0) defined by x = rcos@ and y = rsiné. In car-
rying out the integration over transverse momentum
in Eqs. (13) and (14), we express [dp, [dp,...=

fooodp_;_plfoz"dgo . where p; = picose, p, =
pising, py = (px +pv)’/2 and ¢ is the phase of
p, in the transverse plane. To evaluate the perturbed
ion and electron charge densities on the right-hand
side of Eqs. (13) and (14), what is required are the
orbit integrals occurring in Egqs. (11) and (12) av-
eraged over the perpendicular momentum phase ¢.
For example, for perturbauons with azimuthal mode
number ¢, we express 51//(1 )= S (r') exp(ifd’) =
der't exp(il8') for 0 < r' < ry in the ion orbit inte-
gral occurring in Eq. (12). Making use of Eq. (16)
and r exp(ifd’) = [x' + iy']¢, the required phase-
averaged ion orbit integral can be evaluated in closed
analytical form to give [14,25]

HE(x1,p1) =i(w— kW)
(4]
X /drexp{—-i(w -k, Vo)7}

-00
2

d_¢ i ST
x/zw[x(t)+1y(t)]

i
£
1 4]
-3
2 s m!({ — m)!

w=kW

* w—kzvb_(g__zm)i,b&//(xl), (17)

for 0 < r < rp. From Egs. (11) and (13), the corre-
sponding electron orbit integral I*(x;,py) is iden-
tical in form to Eq. (17), provided we make the re-
plgcements @ —Akz W — @, Dy — D, and Btﬁ(x 1) —
P(xL) = 8pe(r)exp(ild) = erfexp(ifd) in
Eq. (17). Finally, for the choice of distribution func-
tions in Eq. (9), it can be shown that
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YoMpVyTh

with an analogous expression for the electrons, making
the replacements Hp — H e, fiy — fle, Yoty — Me,

and 52 A2
Alig Vb hand V

Making use of Egs. (17) and (18), and the electron
analogues, we evaluate the perturbed ion and elec-
tron densities, occurring in the linearized Maxwell
equations (13) and (14). For perturbations with
azimuthal mode number £, we express Sj(xy) =
&/;g(r) exp(if@) and 5$(xJ_) = O¢py(r) exp(ifh),

and Egs. (13) and (14) reduce to

-~
[T
O

M

’2
= [ L r b (@ — kW) 86°(r)
L!b

+ ,f;e r‘< >6¢f(r)] S 0(r=n). (20)

Here, @2, = 47rhce? /me, and the ion and electron sus-
cepuoumes are defined by

2 N ]T_\ E!
r"(“’”kzv")=“§72~m!(£-m)!
(L —2m)py,
= kV) (£—2m)dy’
1 £! (£ —-2m)p.
ey = A
Te(w) = 2f%m:(e—m)sw~(e—2m)ﬁe’

(21)

for general azimuthal harmonic number £. Note that
the perturbed charge and current densities on the right-
hand sides of Egs. (19) and (20) correspond to per-

etters A 252 (1999) 213-221

turbations localized to the beam surface at r = ry.
Therefore, the exact solutions for 8, (r) and 8¢,(r)
are proportional to r¢ for 0 < r < ry, and proportional
to rt and r¢ for ry < r £ ry. We enforce continu-

ity of the perturbed potentials at r = ry, and 8, (r =
re) =0 = 8:;33( r = ry) at the perfectly conducting
wall. We further relate the discontinuities in d6¢,/dr
and 85, /dr at r = ry by integrating Eqs (19) and
(20) across the beam surface at r = r,. Some aigebraic
manipulation, which is summarized elsewhere [25],
mveq the kinetic dmnerqmn relation

[ 2 , ‘?’?)b T
[T Grfry® ¥ sz 200 W)
x[ 2 +6”"* rf(w)]
[1—-(&,/1\;,)” 773 J
6’3}2 6’215 .-s" ;e
= 7 o) (o -k %). (22)

Eq. (22) is the final form of the kinetic dispersion
relation, derived from the linearized Vlasov-Maxwell
equations for small-amplitude perturbations about the
monoenergetic equilibrium distributions in Eq. (9)
and the corresponding step-function density profiles.
As such, Eq. (22) can be used to determine the
complex oscillation frequency w over a wide range
of system parameters including normalized beam
intensity ( i,/wﬁb) fractional charge neutralization
{f = Re/Zphy), azimuihai mode number (£}, axial
wavenumber (k;), etc., subject only to the simpli-
fying assumptions summarized earlier in this paper.
In the absence of electrons (A, = 0), the dlspersmn
relation (22) supports purely stable (Imw = 0) col-
lective oscillations of the ion beam, and reveals a rich
harmonic content at frequencies w — kW, = £,
2%y, ..., t€p,. When background electrons are
present (A, # 0), however, Eq. (22) supports un-
stable solutions (Im @ > 0) with instability resulting
from the axial streaming (W, # 0) of the beam ions
through the background electrons.

A careful examination of Eq. (22) for 2, # 0
shows that the strongest instability (largest growth

wata) anstien fae azin mwinda numhbhan £ e 1 ~nr

thal
1At J AUl 1ul aLllllul-llal meaC NUIMNMKY « = 1, Lu1=
responding to a simple (dipole) displacement of the
beam ions and the background electrons. For £ = 1, we
find I’} (@) = —P}/[@? — $?] and T} (@ — k. W) =
—92/[(w—k,V)?—p¢] from Eq. (21), and introduce
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the electron and ion collective oscillation frequencies,
w, and wy, defined by

wz"i)2+la‘)2 /l r%\_l'yvmbé)g /1 “
= Y i -_x b - '
e e 2 Pek r\%\!) Zzbme P\

)
where @2, has been expressed as @3, = (yump/

PRVRN

Zptie ) fa)pb Substituting into Eq. (22) and rear-
ranging terms, the £ = 1 dispersion relation can be

exnressed in the compact

LApRLGOoAL iz Wil LU AN

nl ias

(@ = kW) - 0] [0 — o] = 0}, (24)
where wy is defined by

4 _ Yoty ot
G)f = %f(l - ;‘5) mee pb (25)

In the absence of background electrons ( f = 0 and
wy = 0), Eq. (24) gives stable collective oscillations
of the ion beam with frequency @ — k. W, = twy,
where wy, is defined in Eq. (23). For f # 0, however,
the ion and electron terms on the left-hand side of
Eq. (24) are coupled by the w‘} term on the right-hand

qida laand: oy
side, leading to one unstable solution with Ime > 0

for a certain range of axial wavenumber k,. The in-
stability is two-stream in nature, and results from the
directed ion motion with axial velocity V, through
the (stationary) background electrons. Eq. (24) is a
fourth-order algebraic equation for the complex os-
cillation frequency w. Some straightforward analysis

shows that there are two stable solutions to Eq. (24)

with purely real o, and two complex solutions for a
certain range of k, that are complex conjugates (one is
growing with Im @ > 0, and the other is damped with
Imw < 0). Eq. (24) can of course be solved numeri-
cally for & over a wide range of system parameters. In
this regard, it is important to recognize that the disper-

sion relation (24) is annlicahle r\vnr a wide range of

sion relation (24) is applicable o ide rar
normalized beam intensity (&2 b / wﬁb) and fracuonal
charge neutralization (f) consistent with 9, > 0 and
#2 > 0, i.e., consistent with (& pb/wﬁb)(l -7 <
2y2 and 0 < f < 1. That is, Eq. (24) can be ap-
plied to the emittance—dominated moderate-intensity
ion beams (.:opb / wgb < 0.2, say) in the proton linacs
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and storage rings envisioned for the Spallation Neu-
tron Source (SNS) and the Accelerator for Produc-
tion of Tritium (APT). On the other hand, Eq. (24)

can also be applied to the low-emittance, very high-

intensity ion beams (C:)pb /wﬁb approaching 2y, for
f =0) envisioned for heavy ion fusion [5].

A careful examination of Eq. (24) shows that the
unstable, positive-frequency branch has frequency
and wavenumber (w, k;) closely tuned to the values
{wg, k,0) defined by wo = +w, and wg — koW =

Ty thia ra —
—@p. an NI fvgime, expregfuﬁg @ = wy + Sw and

k, = k,0+ 6k,, and assuming |8w| < 2w,, the disper-
sion relation {24) is given to good approximation by

80 (8w — 8k Vo) [1 — (8w — 8k, V) [2wp] = — T2
_ 9 o
4wy, (26)

At moderate beam intensities with '3 < 1, the un-
stable solution to Eq. (26) satisfies |6w — 8k, | <
2wy. In this regime, Eq. (26) can be approximated
by the quadratic form dw(8w — 8k,W) = ~I3 =

_n /An an.. This qnqdratm dispersion relation sup-

@ewy. This guadratic dispersion relation sup
ports an unstable solution with growth rate Iméw =
Toll — (8k,V/2I0)21Y/? for Sk, in the (symmet-
ric) interval, —20y < 8k, W, < 2Ig. The maximum
growth rate is (Iméw)max = o = w}/Z(wewb)’/z,
which occurs for 8k, = 0. The (stabilizing) influence
of the conducting wall is minimized when 72 /r2 —

00, in which case (Im 8w )nax = I'o reduces to

ch case (Im3d max reduces
{(Iméw) yax
“pp
_ 1 PP Owme/Zome) @ o)
DR [+ (f/2)@h,[0%]14 R
For example, for a proton beam (Zy = 1, mp/me =

1836) with relativistic mass factor y, = 1.85, a mod-
erate value of normalized beam intensity c?)P / w?f\, =
0.1, and fractional charge neutralization f = 0. 1,

Eq. (27) gives (Im8w)max = 0.127wf, correspond-
ing to a particularly virulent growth rate for the
electron—proton (e-p) instability. For this choice of

cystam naramatare tha cantral geel 1
system parameters, the central oscillation frequency

and wavenumber are wp = 13—03“’0& and k0% =
14.030%,.

At the very high beam intensities of interest for
heavy ion fusion, the transverse beam emittance
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Fig. 1. Plots of (a) normalized growth rate Imdw/wj,, and
(b) normalized real frequency Re&w/w%b versus shifted axial

wavenumber (k; — k.0)%, /"’%b obtained from the dispersion re-
lation (26) for the unstable branch with positive real frequency.
System parameters correspond to Z, = 1, A = 200 (cesium ions),
(yp — Dmpc? = 2.5 GeV, ry/rw = 0.5, and f = 0.1, Curves are

shown for several values of normalized beam intensity tbf,b/w%zb
ranging from 0.1 to 2.0.

(which is proportional to Tip) is very low, and
the normalized beam intensity cbf,b / w?;b can ap-
proach 2'y§ in the absence of background electrons
(f = 0). This follows from the inequality $2/w%, =
215/ yomsyri < 1 and the definition of 57 in
Eq. (10). At such high beam intensities, it is neces-
sary to solve the cubic dispersion relation (26) or the
full quartic dispersion relation (24) for the complex
oscillation frequency w. Typical results obtained from
Eq. (26) are illustrated in Fig. 1. Here, (Imw)/w},
is plotted versus (k;, — k;0) Yo/ w%b for several values
of &:gb/w%zb ranging from 0.1 to 2.0. Other system
parameters in Fig. 1 correspond to Zp = 1, A = 200

(cesium ions), (yp — 1)mpc? = 2.5 GeV, ry/ry = 0.5,
and f = 0.1. For sufficiently small values of &2, / w%,
the results obtained in Fig. 1 from the cubic dispersion
relation (26) are in excellent agreement with the ap-
proximate quadratic dispersion relation. On the other
hand, at very high beam intensity with &2,/ w?;b =2,
say, it is evident from Fig. 1 that the growth rate
Im /@, has very large bandwidth, and becomes
significantly skewed about k, = k. It is also striking
from Fig. 1, that the instability growth rate can be
very large for the very high beam intensities of inter-
est for heavy ion fusion, e.g., (IM@)max = 2.17w%b,
for &‘)gb/a)oﬂzb =2.

As a final point, it should be emphasized that the
general kinetic eigenvalue equations (11)-(14) can
be applied to electrostatic perturbations about a wide
range of non-monoenergetic equilibrium distribution
functions, FQ(H ) and FO(H 1), and corresponding
self-consistent equilibrium density profiles, nd(r) and
nd(r), that vary continuously with radial coordinate
r. A detailed, self-consistent stability analysis based
on Egs. (11)-(14) for continuously varying equilib-
rium profiles is beyond the scope of the present arti-
cle and will be the subject of a future investigation.
For present purposes, it is sufficient to note that the
spread in (depressed) betatron frequencies [ 11] asso-
ciated with continuously varying equilibrium profiles
is expected to lead to a threshold in beam intensity
and/or fractional charge neutralization for the onset
of the two-stream instability. By contrast, for the step-
function density profiles considered here, the ion and
electron betatron frequencies, ?y, and ., are constant,
leading to sharply-defined particle resonances over the
beam cross section, and a (correspondingly) strong
version of the electron~ion two-stream instability.
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